

CTAO System Control Development
Guidelines

Doc. No: CTA-TRE-SEI-000000-0017-1a

05 October 2022

 First/Last Name, Organisation, Role Digital signature

Prepared
by

E. Antolini, CTAO System Control
Coordinator

Approved
by N. Whyborn, CTAO Lead SE

Released
by W. Wild, CTAO Project Manager

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 2 of 44

Revision History
Issue Rev. Created Reasons / Remarks / Section Author
1 a Draft01 2020.12.16 First draft creation E. Antolini
1 a Draft02 2021.11.05 Content modified based on the

Review process.
E. Antolini

1 a Draft03 2022.01.15 Content modified based on the
Review process II iteration.

E. Antolini

1 a Draft04 2022.06.20 Content modified based on the IKC
comments

E. Antolini

1 a Draft05 2022.07.07 Rewording of scope and minor
edits

N. Whyborn / E. Antolini

1 a 2022.10.05 Final version agreed with IKC E. Antolini

Authors
First/Last Name,
Organisation Contribution Subject/Chapter

E. Antolini, CTAO PO Producer of the document
I. Oya, CTAO PO Managers Specification in Section 3.3, Section 4.2.3, 4.3.1, 5.2.5

Abbreviations
ACADA Array Control and Data Acquisition
ACS Alma Common Software
AECS Array Elements Control System
AIT Assembly Integration and Test
BIT Built In Test
CTA Cherenkov Telescope Array
CTAO Cherenkov Telescope Array Observatory
EUC Equipment Under Control
FMEA Failure Mode and Effect Analysis
HW Hardware
ICT Information and Communication Technology
IDL Interface Definition Language
IM Interface Manager
IP Iterative Process
IPS Integrated Protection System
IRS Interface Requirements Specification
LCS Local Control System
MOE Measure of Effectiveness
MOP Measure of Performances
PES Programmable Electronic System
SRS Software Requirements Specification
SW Software

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 3 of 44

Table of Contents

1 Introduction ... 6

1.1 Scope ... 6
1.2 Applicable and reference documents ... 7

1.2.1 Applicable documents ... 7
1.2.2 Reference documents ... 7

1.3 General Definitions ... 8

2 Control System Engineering Life Cycle .. 8

2.1 System-Level Definition .. 9
2.1.1 Constraints .. 10
2.1.2 Identify Variance and Conflicts ... 10
2.1.3 Outcome - Deliverables ... 11

2.2 Preliminary Design .. 11
2.2.1 Constraints .. 13
2.2.2 Identify Variance and Conflicts ... 13
2.2.3 Outcome – Deliverables .. 13

2.3 Detailed Design ... 14
2.3.1 Constraints .. 15
2.3.2 Identify Variance and Conflicts ... 15
2.3.3 Outcome – Deliverables .. 15

2.4 Implementation .. 16
2.5 Assembly, Integration and Test .. 16
2.6 System Verification Stage ... 17

2.6.1 Non-Compliance.. 17
2.7 Tools and Methodologies.. 17

2.7.1 Software Tools .. 18
2.7.2 SW tools for AE Managers .. 18

3 General Requirements for Control Systems ... 18

3.1 PES Requirement Specification ... 19
3.1.1 Non-Safety requirement specifications .. 21
3.1.2 Safety requirement specification .. 21
3.1.3 Safety integrity requirement specification ... 22
3.1.4 State Machine ... 22

3.2 PES Interface Requirements ... 24
3.3 Array Elements Manager Specification Requirements ... 24

3.3.1 Interfaces with ACADA .. 25
3.3.2 State Machine ... 25

3.4 Monitoring, Storage and Display Specification Requirements ... 25

4 Sub-systems Definition for Array Elements Control Systems 26

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 4 of 44

4.1 Design Specification .. 26
4.1.1 Hardware Design ... 26
4.1.2 Software Design .. 27
4.1.3 Fault Management .. 27
4.1.4 BIT tests ... 28
4.1.5 Safety Units and Safety Functions .. 28

4.2 Implementation .. 29
4.2.1 Hardware... 29
4.2.2 Software .. 29
4.2.3 Array Managers ... 30

4.3 Assembly, Integration and Test Stage ... 31
4.3.1 Integration .. 32
4.3.2 Testing ... 32
4.3.3 Safety-Functions Testing ... 33

5 Verification and Quality Assessment .. 33

5.1 Audits and Review during the Cycle .. 34
5.2 System Verification Testing during the cycle .. 35

5.2.1 Presentation of the test objective and tools. ... 35
5.2.2 Detailed description of the tests. .. 35
5.2.3 Summary and Final Evaluation. ... 36
5.2.4 AE Managers Verification and Quality .. 36
5.2.5 Software Maintenance Provisions .. 36

Appendix A– Iterative Process Tasks and Activities 36

Requirements Analysis and Validation ... 36
Functional Analysis and Verification ... 38
Synthesis and Design Verification ... 39
System Analysis and Control ... 41

Appendix B– Verification Activity ... 42

PLC Verification Procedure ... 42

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 5 of 44

Index of Figures
Figure 1: Control System Development Life Cycle. .. 8
Figure 2: Iterative and Recursive process for the development life cycle. ... 9
Figure 3: Iterative process for the System-Level Definition of the development life cycle. 10
Figure 4: Iterative process application for the Preliminary Design stage of the life cycle. 12
Figure 5: Iterative process application for the Detailed Design stage of the life cycle. 15
Figure 6: Iterative Process application for the Detailed Design stage of the life cycle. 16
Figure 7: PLC States and Transitions ... 23

Index of Tables
Table 1: System-Level Definition tasks ... 10
Table 2: Sub-System Definition- Preliminary Design .. 12
Table 3: Sub-System Definition- Detailed Design. .. 14
Table 4: Control System Definition tasks ... 21
Table 5: Language and Style. The reference to [AD3] is related to the languages to be used. 30
Table 6: AECS Verification and Quality Activities. ... 34

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 6 of 44

1 Introduction
The control systems that should be provided for CTAO are defined in [AD-1]. Based on their
functionalities, the different systems can be realized as industrial solutions, or off-the-shelf
products. Among said systems, the Array Elements (AE) are the most critical and complex systems,
since they are planned to be stand-alone controllable machines provided by different suppliers, that
must be integrated into the centralized controllers (e.g., ACADA) [AD-1].

To transform efficiently the CTAO requirements into efficient control system solutions, easy to be
integrated and maintained, the CTAO standards for the control systems [AD-2] require the application
of the Life Cycle Processes for the development of the products. This document provides a possible
tailoring on how to apply those technical processes, as intended in the international standards [RD-1]
[RD-2], for the realization of the CTAO control systems.

The first part of this document shows how to apply the technical life cycle processes (Section 2) to
ensure the development and maintenance of consistently high-quality products, throughout the
construction stage and the whole lifetime of the observatory. The second part of the document
describes with more details the application of the development processes to the CTAO customized
products. The different layers of the system and the different technologies required are considered,
to deliver a product that is compliant with the CTAO requirements, ready to be integrated in the
observatory and to be maintained with reduced effort. Section 3 presents the specific set of
requirements that should be derived for each control system; Section 4 is mostly dedicated to the
application of the design specifications to the AECS but can be easily extended to every customized
control system or integrated industrial solutions. Section 5 gives guidelines on how the Verification
and Quality activities should be properly applied and integrated in the development process and
scheduled to fit into the defined development phases.

1.1 Scope
The purpose of this document is to provide a possible interpretation of the engineering processes
contained in the standards [RD-1][RD-2], to be applied for the realization of every control system
provided for CTAO, to guarantee the delivery of a high-quality product in terms of efficiency, reliability,
maintainability and cost saving [AD-2][AD-15].

Every section of this document should be considered as a guideline, and the application of the
engineering activities proposed is not mandatory. It is not expected that every part of this document
is applicable to every system. Each development team can take whatever is thought to be useful or
helpful and customize the process based on the budget, needs and manpower, in order to address the
quality requirements in [AD-2] and [AD-15].

This document is applicable to all CTAO contributors, private companies, or CTAO personnel
responsible to deliver any control system defined in [AD-1], and intended to be designed and
developed as products off the shelf (e.g. Array Element Control Systems) and/or integration of
different industrial solutions (e.g. IPS). This is also applicable for future modification and/or upgrades
of the operating systems.

The release of this document is not expected to be retroactively applied, especially where a system
has passed CDR.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 7 of 44

1.2 Applicable and reference documents

1.2.1 Applicable documents
AD-1 CTAO System Control Concept, CTA-TRE-SEI-000000-0016, Issue 1, Rev.

a, 2022
AD-2 CTAO Control System Standards, CTA-STD-SEI-000000-0004, Issue 1, Rev.

a, 2022
AD-3 Software Programming Standards, CTA-STD-OSO-000000-0001, Issue 1,

Rev. a, 2020
AD-4 Interface Management Plan, CTA-STD-SEI-000000-0001, Issue 1, Rev. d,

2021
AD-5 CTAO Maintenance Concept CTA-TRE-SEI-312000-0001 (In prep.)

AD-6 CTAO Verification Management Plan (In Prep.)

AD-7 CTA Generic Telescope State Machine, CTA-SPE-ACD-000000-0001,

Issue 2, Rev. f, 2020
AD-8 https://confluence.alma.cl/display/ICTACS/ACS+Documentation

AD-9 https://gitlab.cta-observatory.org/cta-computing/common/acada-

array-elements
AD-10 https://confluence.alma.cl/display/ICTACS/ACS+Documentation
AD-11 https://gitlab.cta-observatory.org/cta-computing/common/acada-

array-elements/dummy-telescope
AD-12 CTAO Glossary, CTA-LIS-INF-000000-001 (In prep)
AD-13 ICD for ACADA - Array Element Monitoring, CTA-ICD-SEI-000000-0004,

Issue 1, Rev. b
AD-14 ACADA - Array Element Logging ICD, CTA-ICD-SEI-000000-0005, Issue 1,

Rev. a
AD-15 Quality Plan, MAN-QA/110405, V 2.1, 2015

1.2.2 Reference documents
RD-1 ISO/IEC/IEEE 24748-4:2016 Systems and Software Engineering- Life Cycle

Management -Part 4: Systems Engineering Planning.
RD-2 ISO/IEC/IEEE 15288:2015 Systems and Software Engineering- Life Cycle

Processes.
RD-3 ACADA Quality Assurance Plan CTA-PLA-ACA-303000-0002, Is. 2, Rev. b
RD-4 CTA ACADA Software Development Life Cycle CTA-STD-ACA-303000-

0001, Issue 2, Rev. d
RD-5 ACADA Validation, Verification and Quality Assurance Execution Plan

CTA-PLA-ACA-303000-000, Issue 1, Rev. a

https://confluence.alma.cl/display/ICTACS/ACS+Documentation
https://gitlab.cta-observatory.org/cta-computing/common/acada-array-elements
https://gitlab.cta-observatory.org/cta-computing/common/acada-array-elements
https://confluence.alma.cl/display/ICTACS/ACS+Documentation
https://gitlab.cta-observatory.org/cta-computing/common/acada-array-elements/dummy-telescope
https://gitlab.cta-observatory.org/cta-computing/common/acada-array-elements/dummy-telescope

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 8 of 44

1.3 General Definitions
This document adopted the CTAO control system hierarchy and terminology defined in [AD-1].
Anyhow, for the purpose of this document and from the development point of view, the LCS are
considered part of Programmable Electronic System (PES).

Programmable Electronic System: In the control environment, a PES is simply a generic term to
indicate hardware and its direct controller for the purpose of control, protection, and monitoring (e.g.
Motor + Drive + PLC, Interlocks + SafetyPLCs). We decided to use this term to be generic enough and
to cover all the possible configurations adopted by the different CTAO control systems. As defined in
[AD-1], the PES is a system based on a computer connected to sensors and/or actuators, interlocks,
for the purpose of control, protection and/or monitoring. The PES can include various types of
computers, programmable logic controllers, peripherals, interconnect systems, instrument
distributed controllers, and other associated equipment.

Iterative Process: A process that provides the mechanisms for identifying and develop the product
definitions of the system. This process is meant to be applied, throughout the system’s life cycle to all
activities associated with development, verification, and test.

System-Level: System is referring to the system of interest I.E. the product being developed.

2 Control System Engineering Life Cycle
Based on the standards provided by CTAO [AD-2] the development of the control systems at all levels
of control for the hardware and software components, should be performed by applying the life cycle
approach. The different systems should define their own number of phases based on the specific
needs. Anyhow, the minimum number of stages that should be implemented and executed are shown
in Figure 1.

System -
level

Definition

Sub-Systems Definition
System - Level

Verification Preliminary
Design

Detailed
Design Implementation

Assembly
Integration and

test (AIT)

Figure 1: Control System Development Life Cycle.

As part of the development activity, a well-defined iterative and recursive process (Iterative Process)
should be applied for each stage of the cycle, to produce a consistent set of requirements, functional
arrangements, and design solutions.

Figure 2 shows a possible configuration of the iterative process. In this case it is divided in stages,
applied sequentially top-down for each cycle, representing a valid mechanism that produce the
defined deliverables (Outputs), considering the products of the previous stage of the cycle (Inputs)
and providing input for the next level of development.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 9 of 44

Figure 2: Iterative and Recursive process for the development life cycle.

The activities and outcome of the different stages of the development Life Cycle Process and the
application of the iterative process to every phase of the cycle is presented below. The stages to be
applied and their iterations vary based on the deliverables required for the different levels of
development.

The Control phase is applied to every development level for the purpose of managing, documenting
and change tracking of the development activity.

The tasks and activities of each stage of the iterative process are described in detail in Appendix.

2.1 System-Level Definition
This stage of the cycle establishes the definition of the control system with a focus on products at
system level necessary to satisfy operational requirements. The documentation produced in this stage
is required to guide developments at sub-systems level.

The specific activities to be accomplished are listed in Table 1.

Control System Definition
Activity Description Outcome

Establish engineering and
technical plans

• Criteria for determining system definition progress
assessment

• Allocation of technical resources among the
engineering activities

• Engineering plan
• Detailed schedule

Identify, Assess and
Mitigate system risks
(hardware and software)

• Determine all critical aspects of the system
• Assess the identified security risks for critical assets
• Define a mitigation approach and enforce security

controls for each risk

• System risk Assessment
and Mitigation analysis

Complete System
specification (hardware and
software)

• Define and control the system specification for each
product of the system.

• System Specifications

Identify system and
subsystems interfaces

• Subsystems identification
• Define the design and functional interface

requirements among the subsystems

• System Interface
Specification

• Sub-systems Interface
Specification

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 10 of 44

• Define the corresponding subsystem performance
requirements and design constraints.

Identify human/system
interface

• Identify the interface requirements between
humans (engineer/maintainer) and products or
subsystems (performance, workloads, design
constraints, and usability must be included).

• Human/system interface
specifications

• Maintenance/Training
specifications

Table 1: System-Level Definition tasks

As shown in Figure 3, the iterative process is applied at this phase to generate system-level validated
requirements baseline (Requirements Analysis and Validation stages), verified functional and design
architectures, specifications, and system baseline (Functional Analysis and Verification stages) for the
control system to be developed, starting from the CTAO high-level documentation as input.

The validated requirements baseline is documented in the integrated repository, and it is an input to
functional analysis stage. The verified deliverables provided as output of the Functional Verification
stage are used as input for the next stage of the cycle (Preliminary Design).

Figure 3: Iterative process for the System-Level Definition of the development life cycle.

2.1.1 Constraints
The product requirements are derived from stakeholder expectations, project constraints, external
constraints, and higher-level system requirements.

2.1.2 Identify Variance and Conflicts
When voids in needs, constraints, etc., are identified or needs are not properly addressed,
requirements analysis and validation are repeated until a valid requirements baseline is generated.
When incompleteness is shown, functional analysis tasks are repeated to correct voids (see related
Identify variances and conflicts tasks in Appendix).

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 11 of 44

2.1.3 Outcome - Deliverables
The following specifications at system level should be defined, properly documented, and placed
under change control. Each specification should include a qualification section where the methods
used to confirm that each system requirement has been satisfied under normal and abnormal
conditions, are identified.

In constructing well-defined requirements care should be taken to establish agreed, non–ambiguous
nomenclature and to identify in detail the fault conditions of the system.

System specifications

The system specifications should document the system requirements (functional and performance
requirements, design characteristics, and design constraints) and the verification of the requirements
from hardware and software point of view. The description of the software part of the system is
covered by the Software Requirement Specification (SRS).

The definition of the system and qualification requirements must fulfill the applicable external
requirement as defined in the relevant statement of work, requirement specification and IKC
Agreement, as appropriate.

Software Requirements Specification (SRS)

SRS lays out functional and non-functional requirements, and must include a set of use cases that
describe the interactions that the software must provide with the users and the other software.
Software requirements specification permits a rigorous assessment of requirements before design
can begin. It should also provide a realistic basis for estimating product costs, risks, and schedules.

System and subsystem interface specifications

The system interface specifications define the external functional and design interfaces for the system
with respect to other systems (external interfaces). The subsystem interface specifications should
define design and functional interface requirements among the subsystems (internal interfaces).

The definition of the external/internal interfaces must be compliant with the general guidelines for
interface [AD-4] and the high-level architecture and must follow the standard defined [AD-2].

Human/system interface specifications

The team should define the interaction between humans and hardware and software elements
identified in the control system design architecture.

Maintenance/Training specifications

The team should prepare a specification for the personnel required to maintain, and support the
system throughout its life cycle, accordingly with the high-level specifications and standards provided
by CTAO for maintenance [AD-5]. Analysis should determine the safety features required of the system
and the level of training required for such personnel.

2.2 Preliminary Design
This stage initiates the subsystem design and the creation of sub-system level specifications and design
to guide component development. Specific activities to be accomplished are listed in Table 2.

https://en.wikipedia.org/wiki/Functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirements
https://en.wikipedia.org/wiki/Use_case

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 12 of 44

Preliminary Design
Activity Description Outcome

Identify assemblies and
assembly interfaces
(hardware and software)

• Identify the assemblies of each subsystem
• Define the design of each subsystem
• Define functional interface requirements

among the assemblies
• Define the corresponding performance

requirements and design constraints.

• Sub-systems and assembly
specifications (hardware and
software)

• Up to date System specifications

Identify components and
component interfaces

• Identify the components of each assembly
• Define the design and functional interface

requirements among the components
• Define the corresponding performance

requirements and design constraints.

• Component interface
specifications (hardware and
software)

Assess and mitigate
subsystem risks

• Evaluate initial assets of the sub-systems and
determine all critical assets.

• Assess the identified security risks for critical
assets

• Define a mitigation approach and enforce
security controls for each risk

• Sub-system risk assessment and
mitigation analysis

Identify human/systems
interface

• Identify the interface requirements between
humans and assemblies or components.

• Up to date human/systems
interface specifications

• Up to date maintenance/training
specifications

Table 2: Sub-System Definition- Preliminary Design

The Iterative Process at this stage is applied to each subsystem of the control system to be developed
for the purpose of generating subsystem functional and physical architectures. Identified subsystem
functions are decomposed into lower-level functions (assembly level) and allocating functional and
performance requirements to component-level functional and physical architectures.

The verified functional architecture, appropriate to the level of development, is used in Synthesis and
Design Verification to generate design solutions to satisfy stakeholder expectations as defined by the
validated requirements baseline (see Figure 4).

The system analysis is required to evaluate the effectiveness of alternative design solutions, select the
best design solution during synthesis and to manage risk factors throughout the systems engineering
effort (see related tasks in Appendix).

Figure 4: Iterative process application for the Preliminary Design stage of the life cycle.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 13 of 44

The design architecture definitions and Specifications should be documented in the integrated
repository, along with trade-off analysis results, design rationale, and key decisions to provide
traceability of requirements up and down the architecture and used in the next application of the IP.

2.2.1 Constraints
The Sub-system and assembly specifications and interfaces must be compliant with the high-level
requirements, architecture, specification, and standards provided by CTAO.

2.2.2 Identify Variance and Conflicts
When design architecture requirements are not traceable to the validated requirements baseline, it
may require that synthesis be repeated to eliminate nonrequired functional and or performance
requirements; or it may require that the IP activities be repeated to include those missing
requirements (see related Identify variances and conflicts tasks in Appendix).

2.2.3 Outcome – Deliverables
The following specifications should be defined, properly documented, and placed under change
control (Control stage of the IP).

The qualification section of individual subsystem specifications should identify the methods used to
confirm that each subsystem requirement has been satisfied under normal and abnormal operating
conditions.

The models, data files, and supporting documentation created during the design selection and
verification should be maintained, and each version of a model or data file that impacts requirements,
designs, or decisions should be saved in the integrated repository. Models may be digital, partial, or
complete and may be hardware, software, or a combination of both, or may include human models
or human-in-the-loop simulations or mock-ups for usability testing and workload measurement.

Sub-systems risk assessment and mitigation analysis

For critical sub-systems risks, simulations, scale model tests, or prototype tests should be used to
demonstrate mitigation to an acceptable risk level with respect to cost, schedule, and/or
performance.

Subsystem and Assembly specifications

These specifications should document the functional and performance requirements, design
requirements or other imposed design constraints, and the qualification requirements for each
subsystem.

The definition of the functional, performance and qualification requirements must fulfill the high-level
requirement provided by the CTA project.

Component interface specifications

An interface specification for each component identified in the design architecture should be
produced. Component interface specifications should document the functional and design interfaces
among components, which should be satisfied by the selected design.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 14 of 44

The definition of the component interfaces must be compliant with the general architecture provided
by the CTA project and must follow the standard defined [AD-4].

Specification Updating

During this stage, all changes to established specifications under control should be updated:

• System and sub-subsystems interface specification
• System specification
• Validation, Verification and Quality assurance plans
• Human/system interface specifications
• Maintenance/Training specifications

2.3 Detailed Design
This stage completes the subsystem design down to the lowest component level and create a
specification for each component. The outputs of this stage are used to guide fabrication of
preproduction prototypes for development testing. Specific activities to be accomplished are listed in
Table 3.

Detailed Design
Activity Description Outcome

Complete component
definition (hardware and
software)

• Decompose the components of each
assembly to a level sufficient for design
completeness

• Complete the definition of each
subcomponent and component

• Control the interfaces among the
subcomponents.

• Component specifications (for
hardware and software)

• Up to date system, subsystem,
and assembly specifications

• Up to date human/system

interface specifications

• Up to date maintenance/training

specifications

Prepare integrated data
package

• Detailed documentation for each
component and its subcomponents to satisfy
functional architecture requirements,
component interface specifications, and the
assembly specification.

Address component risks
• Mitigate component-level risks that were

assessed to be critical to component
development during subsystem definition.

• Component risk assessment and
mitigation analysis

Table 3: Sub-System Definition- Detailed Design.

The Iterative Process is applied to each component and its subcomponents for the purpose of
generating component functional and design architectures (see Figure 5). Identified component
functions are decomposed into lower-level functions, and functional and performance requirements
are allocated throughout the resulting lower-level functional and design architectures.

In this stage the subsystem requirements are fully defined.

The verified design architecture is used to form the specification tree for the system, and when
combined with the verified life cycle process design architectures, forms the system architecture.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 15 of 44

Figure 5: Iterative process application for the Detailed Design stage of the life cycle.

2.3.1 Constraints
Component specifications must be compliant and traceable with the applicable requirements,
architecture, specification, and standards.

2.3.2 Identify Variance and Conflicts
See 5.2.2 and apply at component-level.

2.3.3 Outcome – Deliverables
The following specifications should be defined and properly documented. The qualification section of
individual specifications should help identify the methods that will be used to confirm that each
component requirement has been satisfied under normal and abnormal operational conditions.

The models, data files, and supporting documentation created during the design selection and
verification should be maintained, and each version of a model or data file that impacts requirements,
designs, or decisions should be saved in the integrated repository. Models may be digital, partial, or
complete and may be hardware, software, or a combination of both, or may include human models
or human-in-the-loop simulations or mock-ups for usability testing and workload measurement.

Component specifications

The project should complete a specification for each component included in the design architecture,
which identifies the functional, performance and qualification requirements for the component.
Internally approved, Verification and Quality assurance plans should be provided.

Specification Updating

During this stage, all changes to established specifications under control should be applied:

• System, product, subsystem, and assembly specifications
• Human/system interface specifications
• Maintenance/Training specifications

Component risk assessment and mitigation analysis

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 16 of 44

For critical component risks, simulations, scale model tests, or prototype tests should be used to
demonstrate mitigation to an acceptable risk level with respect to cost, schedule, and/or
performance.

2.4 Implementation
The purpose of this stage is to perform the implementation of the software and the procurement of
the hardware based on the approved specification produced from the previous stages.

2.5 Assembly, Integration and Test
The purpose of the AIT stage is to assemble and integrate the system (hardware, software, and users),
meanwhile continuing to develop confidence that it will be able to meet the system requirement and
satisfy the specifications.

The major activities of this stage are:

• Assemble, integrate, and test components and assemblies (hardware and software)
• Assemble, integrate, and test subsystems (hardware and software)
• Update and control all changes to approved specifications (if necessary).

The integration activities ensure that combining the lower-level elements results in a functioning and
unified higher-level element, with logical and design interfaces satisfied. Subcomponents must be
progressively assembled and integrated into complete components, components into assemblies,
assemblies into subsystems, subsystems into a complete system.

The test activities should verify that the system will meet system requirements, by first testing the
components and then conducting tests at each level up to the total system. At each level of assembly
and integration, the components, assemblies, subsystems, and system should be subjected to
sufficient testing to ensure operational effectiveness, usability, interface conformance, conformance
with specified requirements, producibility, and supportability.

Figure 6: Iterative Process application for the Detailed Design stage of the life cycle.

The Iterative Process is applied during this stage for the purpose of resolving product deficiencies
when specifications for the system, subsystem, assembly, or component are not met, as determined
by inspection, analysis, demonstration, or test (See Figure 6).

At the end of the AIT activity the following deliverables should be produced and place under control
(Control stage of the Iterative Process):

• Up to date and approved specifications (If necessary)

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 17 of 44

• Components, Assembly, sub-systems test reports
• Integration Test Reports
• Qualification Test Reports

2.6 System Verification Stage
The verification procedure evaluates whether the control system complies with the requirements and
specifications imposed during the development phase.

The procedure involves the organization of internal audits (see Section 5.1) to demonstrate that the
system has been verified to satisfy specification and baseline requirements for each system level and
to confirm readiness for validation stage.

• Issues for the components, assemblies, subsystems, products, and life cycle processes and
services are resolved.

• Test procedures for components, assemblies, subsystems, and system were completed and
were accurate.

• Tests were conducted in accordance with established procedures.
• All component, subsystem, and system products meet specification requirements.
• Risk-handling procedures are satisfactory.

The result of this activity should be properly documented with a dedicated report (e.g. Verification
Report)

2.6.1 Non-Compliance
Any non-compliance should follow the formal procedure defined by CTAO [AD-15].

Anyhow, as general advice, when a subcomponent, component, assembly, subsystem, or system fails
to satisfy its requirements, the deficiency should be analyzed to determine the cause of the problem
and apply the System Engineering Process to resolve the problem. The product should then be
retested to ensure the compliance with specified requirements.

2.7 Tools and Methodologies
All the activities related to the engineering process should be performed using adequate analysis
tools and methodologies for:

• Numerical studies to define a control architecture compliant with requirements (considering
constraints such as cost, schedule, and risk)

• Numerical Analysis supporting the control detail design
• Performance verification analysis (including simulation)
• Evaluation of Code quality and verification [RD-3][RD-4][RD-5]

The assessment of safety hazard must follow the standards provided in [AD-2]. Some technique that
can be used is listed below:

https://en.wikipedia.org/wiki/Specification

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 18 of 44

• Process Hazard Analysis (PHA)
• Fault Tree Analysis (FTA)
• Hazard and Operability Study (HAZOP)
• Failure Mode and Effect Analysis (FMEA)
• Event Tree Analysis (ETA)
• Quantitative Risk Assessment (QRA)

2.7.1 Software Tools
The analysis should be performed with well recognized software packages. For instance,
MATLAB/Simulink are the recommended software packages to perform servo control loop
simulations.

For the required calculations, such as failure rate and reliability, information must be collected from
suppliers for specific components or using failure rate from similar applications from the past
experience or specialized prediction software (e.g. Reliasoft).

A suitable set of tools, including languages, (graphical) editors, compilers, and configuration tools,
should be selected for the required integrity level of the software [AD-2].

To determine the Performance Level (PL) of safety related control systems, the free tool Performance
Level Calculation is recommended by ISO 13849-1.

2.7.2 SW tools for AE Managers
Based on the software languages and development environment defined for AE implementation (see
4.2.2), two types of tools are recommended to perform the automated code analysis and the Unit
Testing:

• SonarQube, which is an open-source platform for ensuring code quality.
[https://www.sonarqube.org/]

• Jenkins, which is a self-contained, open-source automation server which can be used to
automate all sort of tasks related to building, testing and delivering software
[https://www.jenkins.io/]

3 General Requirements for Control Systems
This Chapter provides guidelines on how to define the internal requirements specification in the
context of developing the control system of the corresponding system, subsystem or instrument, as
grouped in [AD1].

Whenever the final product is realized through the presence of devices already available as industrial
solutions (e.g. IPS), the requirements to be defined must be focused to led to the right choice of the
devices, in a way that the technical features fulfill the project needs, and to ensure the integration and
verification of the final product.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 19 of 44

3.1 PES Requirement Specification
This section described the requirements needed for the safety and non-safety CTAO control systems
to be developed as PES. For the AECS the PES includes the LCS [AD-1].

For the scope of this document the operators of the PES are the Expert Operators, as defined in [AD-
12], and the actors can be all the external Software which interacts with the software of the PES.

In the requirement specification phase, it should be stated clearly and in the appropriate detail, what
the Control System has to do with the system or process, distinguishing within the document the non-
Safety related requirement specification, applied to the Non-Safety Related PES, from the Safety
related requirement specification, applied to the Safety-related PES, in the sense specified in the
related standards [AD-2].

The Safety and Non-Safety Requirements Specification should comprise:

• The Functional Safety (non-Safety) Requirements Specifications, that should contain all the
requirements necessary for the design phase to achieve the required functional operational
of the PES.

• The Safety Integrity Requirements Specifications, that should include modes of expression and
descriptions which are understandable and appropriate to the duties they must perform (to
personnel involved in the design) operation and maintenance of the PES.

The Safety and Non-Safety Requirements Specification should be expressed and structured in such a
way that it is clear, precise, unequivocal, verifiable, testable, maintainable, and feasible.

The most important categories that need to be considered while defining PES requirements are
provided below.

Environment

Consider the environment in which the PES operates.

Modes of operation

Describe the modes of operations of the process including the operator responsibilities in the process.

Control/Safety system behaviour

Describe and document the required behaviour of the safety (and non-safety) systems (e.g. Use Cases
at LCS level), in normal process operation and in the presence of potential safety hazards processes.

Global Hazard analysis

Include the control system in the Hazard analysis of the system, identifying the constraints on the
control system part and, on rest of equipment and process.

Risk classification and risk reduction

Identify the risk class (applying the risk graph from relevant standards) and define the system integrity
levels.

Process behaviour and interface

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 20 of 44

Specify all aspects of the process that can be protected or monitored by the PES:

• Describe the detailed behaviour of the process during normal operation, in the presence of
failures and in any other operating mode such as maintenance or calibration activities.

• Specify in detail the interfaces (include also physical and electrical levels) between the PES
and the process.

Operator role and interface

Define all mode of communication between the operator/actors and the PES:

• Define the behaviour of the operator, for correct operation of the System, considering the
possible impact of operator failure, and the consequent impact on System safety

• Consider the Identification & Authentication, as well as Access Control of the operator. The
security log should record the operator actions.

Functionality of the PES

Specify the expected functional behaviour of the PES (safety and non-safety related) to take account
of both normal operation and operation with failures. It should be considered that, under any event
or any combination of events so described, the system as a whole, will remain in or move to a safe
state.

Integration Plan

Procedures for system integration, system test, assessment and final acceptance should be clearly
documented including a detailed description of responsibilities between customer, supplier, and
assessor.

Verification Matrix

Define a Verification matrix, listing the requirements contained in the specification document and
identifying for which milestone (e.g. gateway reviews), and according to which method, these shall be
verified.

Procurement Planning

All requirement, specification, application software development, integration, installation testing,
certification, and acceptance carried out internally by the development teams must be properly
documented [AD-2].

Performance

It is important that overall timing process characteristics are clearly documented, and that the timing
and synchronization of the PES meets the timing needs. Integrity levels, as intended in the related
standards [AD-2], for both hardware and software components should be identified both in normal
system operation and in the presence of external failures, to which, the PES should respond.
Mechanisms for diagnosing problems and monitoring the operation of the PES should be described.

Maintenance requirements

Mechanisms for maintenance and, replacement of components and systems (including software),
should be documented. The effect of invoking these on the whole System should also be described.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 21 of 44

3.1.1 Non-Safety requirement specifications
The objective is to develop the PES Requirement Specification for the control systems necessary to
implement the non-safety related operational functions required by the system. The non-safety
related requirements specification applies to the Control Units of the PES, as defined in [AD-1].

The Functional non-Safety Requirements Specification depends heavily on the type of product that is
being developed and its purpose. Anyhow, the following list of key-field should guide the contributor
to come to a complete specification.

Key-Field Dependencies and Contents
Size of data to be controlled Numbers and types of sensors (e.g., precision, resolution)

Numbers and type of actuators (e.g., precision, resolution)
Timing requirements

Technical HMIs Interfaces for operators
Monitors, keyboards, mouse touchscreen
Access rights for operators
Uniform I/O to the user
Programming environment [AD-2]
Use of standard software modules [AD-2]
Change management (on-line or off-line)
Graphical/textual input
Communication between processes and engineering system
Use of standards [AD-2]
National language guidelines and documentation [AD-2]

Report of the system Time stamps
Ordering or sequence of events
System wide/single clock and related accuracy

Table 4: Control System Definition tasks

After the analysis, each feature must at least fall into one of the following categories: Mandatory,
Optional, Not Required, Not applicable.

3.1.2 Safety requirement specification
The objective is to develop the function requirements Specification for the safety related control
systems necessary to implement the required safety functions (see Section 4.1.5).

The requirements specification of this category applies to the Safety Units of the PES, as defined in
[AD-1], and must follow the standards provided for Safety [AD-2].

Below is reported a summary of the main aspects that the functional Safety Requirements
Specification must cover:

• Identify the required safety functions in order to achieve functional safety.
• Define the safety-related equipment to implement the safety functions.
• Analyse throughput and performance response time.
• Define system and operator interfaces.
• Define interfaces between the safety-related system and any other systems.
• Consider any safety relevant information which may have an influence on the safety-related

system design.
• Consider all relevant modes of operation of the EUC.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 22 of 44

• Consider all required modes of behaviour of the safety-related system. In particular, failure
behaviour and the required response of the safety-related system should be detailed.

• Identify and document any relevant constraints between the hardware and the software
should be identified and documented.

• Include all environmental conditions which are necessary to achieve functional safety.
• Define the procedures for starting up and restarting the PES.
• Specify requirements necessary to enable monitoring of the PES hardware to be undertaken.
• Individuate requirements for periodic testing of the safety functions.

Where the PES safety-related system must implement both safety and non-safety functions then the
hardware and software should be treated as safety-related unless, it can be shown that there is
adequate independence between the safety and non-safety functions.

Relaxation from this requirement should only be permissible if it can be shown that:

• The safety functions are independent.
• The implementation is independent.
• The failure of any non-safety-related functions does not affect the safety-related functions.

3.1.3 Safety integrity requirement specification
The objective is to develop the Safety Integrity Requirements Specification for each of the safety
functions, considering the assigned Integrity Level as intended in the related standard [AD-2].

Where the PES must implement safety functions of different Safety Integrity Levels then the PLC logic
solver (hardware and software) should be treated as belonging to the highest Safety Integrity Level.
The requirements for safety integrity, as they relate to "the control of errors" in the PES design, should
be composed of requirements for:

• hardware integrity.
• software integrity.
• system integrity comprising environment and operation.
• data integrity and application (software) integrity checks.

The requirements for the above error clauses are discussed in the related standards reported in [AD-
2].

3.1.4 State Machine
The Deterministic Finite State Machine approach, as defined in [AD1], is mandatory for every layer of
CTAO control software, as stated in [AD-1]. Based on that, the Safety and non-Safety PES requirement
specification must include the definition of a dedicated state machine for every layer of software
included in the Safety and non-Safety PES.

The deterministic state machine presented here must be intended as a possible, generic, and not
unique representation of the state machines that ca be defined for every LCU of the CTAO Array
Elements.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 23 of 44

The number of states, the names, the state transitions, and the specific configurations can be
customized as needed, as much as the deterministic aspect of the system is respected: undefined
states and unknown configuration cannot be accepted [AD-1].

In this section a simple classification of a system into (at least) 5 states and their possible transitions
is proposed. A sketch of the state machine is reported in Figure 7.

Figure 7: PLC States and Transitions

The states defined are:

• OK, where the system is operating normally.
• Undetected, in which the system is operating with an undetected Error/Failure condition.
• Detected, in which the system is operating, the error has been detected and the acknowledge

of the error has been done. In this status the fault condition has been classified and recognized
and the system is operating. The aim is to provide an adequate level of assurance that a
particular fault will be discovered depending on the severity of the fault.

• Safe Failure is the status in which the system has failed safely. The system is not operating but
can be recovered. Those faults which require (and possess) recovery actions must be
identified.

• Fail Dangerous is the status in which the system has failed in a dangerous manner. The system
is not operating. The development process should guarantee the absence of the transitions to
this state.

Since the document applies to different systems, with different functionalities, we decided not to give
any further advice for the states to be defined during operations, which in this scheme is generically
indicated as “OK”. The fault management instead can have the same states and transitions, despite
the functionalities of the systems being different.

The permitted transitions are:

• Recover, which takes the PLC system to the OK status after the recovery from a failure
situation (Detected, Fail Safe).

• Detect, which takes the system to Detected status after the occurrence of an error/failure
situation that has been identified.

• Undetect, which takes the system to Undetected status after the occurrence of an
error/failure situation that has not been identified. Such a transition can arise for a number of
different reasons which typically need some analyses that should be carried out during

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 24 of 44

systems requirements analysis. The state transition into the Fail Safe is mandatory if the cause
of the error is not promptly identified.

• Fault, which takes PLC system to Fail Safe status. These failures do not influence the safety of
the system, but interrupt the operation of the equipment under control in a safe way.

• Severe, this transition takes the system directly to the Fail Dangerous status. Such failures
constitute a major threat to the integrity of the system. In devising the PLC requirements, the
development process should guarantee the absence of such transitions.

From this classification the appropriate state machine related to the specific system can be built. The
functional and non-functional requirements for the state transitions should be implemented following
the engineering practices for the development of the PES systems presented in this document.

3.2 PES Interface Requirements

The Interface Requirements Specification (IRS) specifies the requirements imposed on the hardware
and software components of the PES to achieve one or more interfaces among these entities.

The IRS can be used to supplement the System Requirements Specification as the basis for design and
qualification testing of systems and the related hardware and software components.

In defining the PES interface requirements, the standard communication protocols provided by CTAO
between the following systems must be considered [AD-2]:

• Communication protocols between field devices and the supervisors (e.g. Profinet, EtherCAT,
Profibus).

• Communication protocols between Supervisors and Manager (e.g. Ethernet)
• Communication protocols between IPS and Safety Control Units of CTAO (TBD)
• Communication protocols between IPS and ACADA Monitoring (See Section 3.4)
• Communication protocols between Power Management System and ACADA Monitoring (See

Section 3.4)
• Communication protocols between Power Management System and IPS (TBD)
• Communication protocols between ICT and ACADA Monitoring (See Section 3.4)

Notes:

• The technical feature to define the protocols for the monitoring of ICT, PMS and storage of
IPS parameters are still under investigation.

• The needs for direct connection between IPS and the safety Units of the instruments is
under investigation.

3.3 Array Elements Manager Specification Requirements
This section describes the requirements categories needed for the software modules of the AECS
which interface with ACADA, named Manager (see [AD-1] for details).

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 25 of 44

3.3.1 Interfaces with ACADA
The control interface between ACADA and the AE Managers are specified in the following
documents:

CTA-ICD-SEI-000000-0002 ICD for ACADA - Generic Telescope Control
CTA-ICD-SEI-000000-0003 ACADA - FRAM Control ICD
XXX ACADA - LIDAR Control ICD (TBD)
XXX ACADA - FRAM Control ICD (TBD)
XXX ACADA - All Sky Camera (ASC) Control ICD (TBD)
XXX ACADA - Illuminator Control ICD (TBD)

3.3.2 State Machine
In describing the process of developing Manager Requirements for each Array Elements, the
Deterministic Finite State Machine approach is mandatory, as described in [AD-1], and the states and
modes defined must be compliant with the State Machine required to be controlled by ACADA:

• Generic Telescope State Machine [AD-7]
• LIDAR State Machine [TBD]
• FRAM State Machine [TBD]
• Weather Station State Machine [TBD]
• ASC State Machine [TBD]
• Illuminator State Machine [TBD]

3.4 Monitoring, Storage and Display Specification Requirements
The monitoring, storage, and display of the non-safety related parameters of all the controllable items,
together with the storage service for the IPS parameters, will be performed though the monitoring
and logging system of ACADA, when possible [AD-1].

The communication protocols are specified in Section 3.2.

The monitoring interface between ACADA and the controllable items are specified in
the following documents:

• Array Element Monitoring ICD [AD-13]
• Array Element Logging ICD [AD-14]
• PMS Monitoring and Logging ICDs [TBD]
• ICT Monitoring and Logging ICDs [TBD]
• IPS Logging ICDs [TBD]

Note: The compatibility of the technical features of the controllable items with the
monitoring/storage technology adopted for ACADA is under investigation. If some incompatibility with
ACADA will be found, more specific instruction will be provided.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 26 of 44

4 Sub-systems Definition for Array Elements
Control Systems

This Chapter provides inputs to develop the hardware and software component of the sub-system
related to the Array Elements Control Systems (AECS), the most complex customized control systems,
which includes the LCS and the Managers as defined in [AD-1]. Anyhow the same approach can be
applied to every CTAO control system which need customized solutions for the realization or when an
integration of different industrial solutions needs to be defined.

4.1 Design Specification
This section describes how to define the design specifications needed for the safety and non-safety
control systems to be developed for the Array Elements. The content of this section applies to the
Preliminary Design and Detailed design stages of the development cycle.

Verification Plan

Define a Verification Plan [AD-6] considering the following aspects:

• Formulation of the safety and non-safety criteria and states.
• Test patterns/Test Cases for the inputs and its environment.
• Procedure for validation of each safety and non-safety function.

In the process of defining Verification activities the operation and maintenance processes should be
taken into account.

4.1.1 Hardware Design
The hardware design specification of safety and non-safety control systems, after the preliminary
design and the detailed design stages, should contain the following items:

• Generation of block and circuits diagrams
• Interface criteria
• Design analysis
• Detailed calculations and test procedures.
• Arrangement drawings
• Assembly drawings
• Detail drawings
• Installation drawings
• Logic diagrams
• Numerical control drawings
• Schematic diagrams
• Models and simulations

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 27 of 44

4.1.2 Software Design
Software design documentation should contain safety-related functions and non-safety-related
functions. The software items architecture, design requirements, implementation logic, and data
structures must be documented. In particular the detailed design stage should produce design
specification at module level for each software that need to be implemented (the firmware of the field
devices selected as industrial solution are not included in this procedure), which are usually LCS
Supervisors (e.g. PLCs) and the Managers:

• Software Module Design Specification
• Module test specification.

The module design will enable the implementation of software, which not only achieves the required
integrity level, but which is also analyzable, verifiable, and maintainable.

The Software Module Design Specification should indicate how independence between safety-related
and non-safety related function is achieved with the objective to create the software of a defined
integrity level from the software design specification.

The software produced should be minimum in size and complexity, and the module design method
chosen should possess features that facilitate:

• The abstraction, modularity, and other features which control complexity.
• The clear and precise expression of functionality, information flow between components,

sequencing and time related information, concurrence and data structures and properties.
• Human comprehension.
• Verification and Validation.

The module design should include self-monitoring of control flow and data movements and On failure
detection appropriate actions should be taken (see next Section).

If standard or previously developed software is to be used as part of the design, then it should be
clearly identified and documented.

Wherever possible existing verified software modules (or function blocks) should be used in the
design.

Each software module should be readable, understandable, and testable.

4.1.3 Fault Management
The fault management is one of the most important features of the software design and must be
applied at all level of control for the correct operation of the system.

The software associated to every level of the AECS (LCS and Manager) should independently be able
to identify, isolate and mitigate with the appropriate actions the fault situations related to the
hardware and software that can occur in the associated sub-system.

The following classes of potential faults should be considered to identify distinct failures that can arise
and to give them a characterization:

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 28 of 44

• Failure of some integrity property of the state of the system. This may either be an
inconsistency arising from the internal variables of the intended software or, in the
input/output relation computed by the program.

• Failure to meet some progress or timing constraint. This will translate to a requirement that
expresses that the software delivers certain responsiveness.

• Failure to obtain the format/range etc. of data from some hardware interface.
• Failure of the system software, kernel failure (whenever possible).
• Failure of compiler/assembler/translator from the coding language to the executed code.

The measures to control failures are built-in features of the safety and non-safety control systems,
while the measures to avoid failures are the procedures done during the development life cycle.

It is important to have in mind that it is not possible to list all the individual physical causes of failures
in complex hardware and software systems (e.g. Random failures in the hardware, failures caused by
incorrect use, software failures).

To avoid such failures or control such failures when they occur many measures are necessary. In the
Control System Requirements Specification an appropriate group of measures and techniques to be
used for safety integrity, as they relate to the control of failures and the avoidance of failures, should
be composed.

4.1.4 BIT tests
As stated in [AD-1], to support operational and maintenance of the CTAO control systems, techniques
such Built in Test (BIT) and the related equipment, should be designed and developed whenever is
possible and reasonable considering the available budget and manpower efforts, providing very good
solutions for self-diagnosis and self-recovery mechanisms. See Table A.5 for more details.

4.1.5 Safety Units and Safety Functions
The safety functions and the related Safety Unit are intended as defined in [AD-1].

The safety functions are required to put the equipment under control (EUC) into a safe state or to
maintain a safe state, as intended in [AD-1].

The design specification of the safety functions, as well as the Safety Units of the Array Elements, must
follow the guidelines provided by the related standard, as stated in [AD-2].

In defining the Safety Functions the correct Safety integrity level (SIL) must be considered, as a
measurement of performance required for a safety instrumented function (SIF), as specified in [AD-
2].

Based on the nature of the EUC, the Safety Units should be designed as separate dedicated system, or
they must be integrated with the normal machine control system:

• The hardware and software dedicated to performing a particular safety function, like limit
switches intervention or emergency stops, must be considered as stand-alone equipment.

• Functions available in the machine control system, like Safe Torque Off (STO) or Safe Stop
1(SS1) of motor drive, must be integrated in the other safety equipment.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 29 of 44

An important aspect of the design of safety equipment is that the system must continue to operate
correctly under all foreseeable conditions, to provide the safety functions. A failure of the safety
functions can result in an immediate increase of the risks of using the equipment. The main task of
the safety system designer is to prevent hazardous conditions and to prevent unexpected start-up and
to avoid damages to the mechanical components.

Relevant means of implementing safety functions include electro-mechanical relays (e.g., Interlocks),
non-programmable and programmable solid-state electronics. Programmable electronic safety-
related systems typically incorporate programmable controllers (Safety PLCs), programmable logic
controllers (Safety Logic Chains), microprocessors, application specific integrated circuits, or other
programmable devices adapted for safety (for example "smart" devices such as
sensors/transmitters/actuators) as specified in [AD-2].

4.2 Implementation
This section describes how to tailor the implementation of the control system components to be
developed for the Array Elements. The content of this section applies to the Implementation stage of
the development cycle.

4.2.1 Hardware
The hardware for the different sub-systems of the Array Elements is procured and the following two
stages may be applied:

• Prototyping/Production Engineering. This is the prototype stage of the development.
Prototypes are tested prior to the continuation of the development. Any prototype software
that may be required is used at this stage for testing.

• Sub-system Integration and Proving. This is the stage at which the hardware documentation
is collated, showing test results and final production information - prior to system integration.

4.2.2 Software
The software implementation should be done following the Software Module Design Specification
defined during the design stages. The activity of the implementation is the Coding which produces the
Source Code and the supporting documentation. The objective is to implement software, which
achieves the required integrity level, and which is also analyzable, verifiable, and maintainable.

The developers must follow the standards provided by CTAO for the software implementation of each
level of the control system [AD-2] and briefly summarized below.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 30 of 44

Sub-System Language Style

LCS Supervisor
PLC (IEC 61131-3)

Instruction List (IL)
Structured Text (ST)
Ladder Diagram (LD)
Function Block
Diagram (FBD)
Sequential Function
Chart (SFC).

-Small scale applications typically are
programmed by the user
-Large scale applications (e.g. in
control) should be configured from
standard function blocks as
completely as possible.
-Only those functions for which no
standard block is available, should be
programmed. This minimizes coding
errors.

Safety Logic

Safety PLC (IEC
61131-3)

Certified Safety
Function Blocks Functional Safety [AD-2]

Certified Functional Safety tools and
languages Functional Safety [AD-2]

Managers

 Software
Programming
Standards [AD-3]

Java, Python, C++
(using ACS framework)

Software Programming Standards
[AD-3]

Table 5: Language and Style. The reference to [AD3] is related to the languages to be used.

The language(s) chosen should, at least, meet the following requirements:

• A programming language should be selected that relates to the characteristics of the
application.

• The language chosen should contain features that facilitate the identification of programming
errors.

• The language chosen should support features that match the design method.

As a minimum, the following information should be contained in the source code documentation:

• Version
• Author
• Description
• inputs and outputs
• configuration history.

4.2.3 Array Managers
The Array Element Managers, listed in [AD-1], should be implemented as ACS Characteristic
Components. See more information in [AD-8].

4.2.3.1 Realization of interface with ACADA
The Array Element Managers expose their software interfaces to ACADA using the ACS communication
mechanisms. In particular, control operations, and monitor and control points are realized as CORBA
Interface Definition Language (IDL) files. The IDL file creation is driven by the ACADA team, and its
content and any change must be agreed upon by both the ACADA and AE team plus IM, and put under
configuration control on the CTAO gitlab repository. The interface exposed as IDL files must be

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 31 of 44

compliant with the corresponding ICD. Any non-trivial change on the released IDL files must happen
as a consequence of a Change request accepted by the CTAO CCB.

The currently existing IDL are locate in [AD-9].

4.2.3.2 Code implementation
Array element managers code can be implemented using any of the ACS-supported languages: C++,
Java and Python. Examples and tutorials are provided in [AD-10].
The code must be maintained under configuration control in the CTAO GitLab repository.
The AE Manager code must follow the standard software QA practices and the CTAO programming
standards [AD-3]. In particular, the code must be provided with unit and integration tests, with a
minimum of 80% (TBD) line coverage.

Some example implementations are provided here [AD-11].
The Code must be properly tested and tagged before installing it at the On-site ICT environment
(details TBD).

4.2.3.3 Runtime environment
In production, the AE Managers run on dedicated nodes of the Onsite-ICT infrastructure.
Onsite-ICT machines use Linux Red Hat distribution derivative operating system.
The usage of docker containers is permitted (details TBD).

4.3 Assembly, Integration and Test Stage
This section provides some inputs to perform the integration and testing stage of the control systems
to be developed for the Array Elements. The content of this section applies to the AIT stage of the
development cycle.

The prerequisites are:

• The Hardware of the Subsystem is selected for every control level (LCS and Managers)
• The application software developed for every control level is verified (Managers)

The objective of the AIT activity is to integrate the verified application software with the hardware
(e.g. Target PLC) and develop confidence that the system will meet the specification and
Requirements.

The integration and testing of the AECS should be performed starting from the lower level up to the
highest level:

• Integrate and test the verified LCS (hardware and software). The verification and integration
of supervisors and filed devices (e.g. actuators, motors) is considered included in the verified
LCS.

• Integrate and test the verified Supervisors (hardware and software) with the verified
Managers.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 32 of 44

4.3.1 Integration
As part of the integration activities, evidence needs to be collected showing that system functionalities
and safety (non-safety) requirements will be maintained during operation.

To achieve this, the following should be investigated:

• The effects of failure of individual software and hardware modules on the maintenance of
system requirements.

• The effects of a single control level failure (e.g. PLC supervisor) on other levels and the effects
of inter- level communication failures.

• Safety aspects of software and hardware system architecture and their behavior in the event
of operation e.g. fault tolerance through redundancy, exception handlers, recovery blocks etc.

4.3.1.1 Mock-up versions
In order to facilitate the off-line testing of the AE itself and pre-integration with ACADA, mock-up
versions of the AE managers, which do not require any AE instrumentation to run and can run in any
standard Linux Red Hat derivative distribution currently supported versions defined at [TBD reference]
derivative machine must be delivered.

4.3.1.2 Integration with ACADA
In order to integrate, AE managers and ACADA use the same ACS manager instance at runtime. The
AE and ACADA team will work together to define and realize integration tests based on the ACADA
use cases. In addition, they will work together to define common software settings (ACS CDB) for
concurrent operations of the respective systems. Such settings are to be maintained under
configuration control after the AE acceptance.

4.3.1.3 Unit Testing
As part of code implementation and before the Integration with ACADA, the developers of the AE
Managers are required to implement and perform Unit Tests of their code (in addition to the
functional tests), by using appropriate tools for the language used. A list of tools is available in 2.7.1.

4.3.2 Testing
After the integration and installation of the hardware and software part of the safety and non-safety
related systems, a testing of the safety and non-safety functions implemented is mandatory.

This phase involves the presence of the following prerequisites:

• Specification of the safety (non-safety) functions.
• Outcome of prior off-line-tests and type approvals.
• Checkout procedure for the correctness of the installation.
• Start-up and shut down procedures.
• Run in procedures (if appropriate for controlled process).
• Manually executed complementary safety shut down procedure (if appropriate for controlled

process).

The activities are:

• Testing the correctness of the installation.
• Running in the controlled process (if applicable).

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 33 of 44

• Testing of all automatic safety related functions during run-in.
• Start-up of the controlled process.
• Testing the safety functions with manual safety functions and with simulated dangerous

conditions.
• Shut down of the controlled process.

The main goal will be the testing of the System - installation, pipes, vessels etc. - and of the basic
process control functions - sensors, actors, Human-Machine Interface, operating procedures - as well
as the operators gaining experience. This time is when all the safety functions are tested in the
integrated environment and monitor the process response.

4.3.3 Safety-Functions Testing
The testing of some safety functions requires the process to be in a dangerous state. The test may
demonstrate that the safety system would bring the process into a non-dangerous state by the
appropriate action (e.g. shut down). In test steps like these, any "real danger" must be avoided. This
can often be done by taking these test steps in the run-in phase, or, by having complementary
(manual) shut down facilities available.

An alternative way is to simulate a dangerous state of the process, at the sensor level, to test some of
the safety functions.

The testing of the safety functions must be planned and carried out very carefully. On one hand the
testing must be completed in a specific sense (cover all functions) - on the other hand the on-line-
testing of safety functions can be expensive and potentially dangerous.

It has to be noted that an important key to a later safe operation of the process is the involvement of
System operations, and maintenance personnel, during the on-line-testing phase to assure a clear
understanding of all aspects of the process, the control system, and the safety-related system.

5 Verification and Quality Assessment
In this chapter are presented some guidelines on how to apply the Verification and Quality activities
for the development process of the CTAO customized control systems (e.g. AECS) and the integration
of industrial devices. Whenever needed, specific instructions for the AECS will be provided.

The full procedure, roles and responsibilities of the Verification and Quality activities must be defined
to be compliant to the guidelines and procedures defined at CTAO level [AD-6]. The Validation process,
which provides the organization of external review, is outside the scope of this document.

This section reports the assessment that usually a quality/verification process should achieve for every
AECS and to which every software and hardware component of the control system must undergo (LCS,
Managers). The activities are performed through the development cycle (see Section 2).

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 34 of 44

5.1 Audits and Review during the Cycle
During the development phase of the AECS, the teams should conduct the Verification and Quality
assessment, by organizing internal reviews (e.g., system, subsystem, component, life cycle processes,
test readiness, production approval) and audits (e.g., functional and design configuration), for the
purpose of assessing technical progress together with the quality of the product and process.

The process should have 'hold points' beyond which development should not proceed until the
review/audit assess the compliance with the deliverables and quality levels required in that specific
stage.

Reviews may result in the need to iterate through the Iterative process to resolve identified
deficiencies before progressing further in the development activity.

The purpose of the Verification and Quality activities is to ensure that the control system is being
implemented into the product with the desired quality as the development proceeds, so that if
problems occur, they can be resolved as soon as they manifest themselves.

Each team must establish and maintain product and process quality factors to continuously improve
products and processes throughout the system life cycle in a manner consistent with CTAO objectives
and Quality Requirements [AD-6]. General Verification and Quality activities to be performed for each
development stage are reported in Table 6.

System Definition
Quality Activity Verification Activity

Definition of quality factors at system level:
Producibility, Verifiability, Ease of distribution
(packaging, handling, transportation, storage,
installation, and transition), Usability, Supportability,
Trainability, Disposability.

Perform reviews to assess the maturity of the system
development effort and the readiness to progress to
subsystem definition.

Preliminary Design
Quality Activity Verification Activity

Identify and quantify quality factors defined above for
sub-systems. The subsystem life cycle quality factors
should be decomposed and allocated among the
assemblies, and then the components, in a manner that
ensures that quality-factor traceability is maintained.

Perform preliminary design review to:
• Assess the maturity of the definition of the AECS and

the related sub-systems.
• Determine whether the total system approach to

detailed design satisfies the system baseline
• Unacceptable risks are mitigated
• Issues for all subsystems, products, and life cycle

processes are resolved.
Detailed Design

Quality Activity Verification Activity
Identify and quantify component life cycle quality
factors, which influence each component’s capability
to meet downstream requirements. The component
life cycle quality factors should be decomposed and
allocated among the component’s subcomponents,
and then lower subcomponents, in a manner that
ensures that quality-factors traceability is maintained.

A detailed design review should be planned to assess
the maturity of the development effort and to check
whether the design of the AECS is ready to continue into
AIT stage. The related technical reports must be
provided.

Table 6: AECS Verification and Quality Activities.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 35 of 44

5.2 System Verification Testing during the cycle
The verification testing of the system is applied is usually applied during the AIT and Verification stages
to test the integrated system to ensure compliance with the Requirements Specification of the overall
process in which all the sub-systems (Field Devices, Supervisors and Managers) of the AECS has been
integrated and tested. Testing should be the main verification activity, but simulation and modelling
may be used to supplement the verification process.

Some examples are provided in Appendix.

For the overall verification the following tests, compliant with the system requirements, should be
performed at system level:

• Function tests: all sequences, all functions, all inputs, all outputs.
• Time behavior tests: all operating conditions, all timing requirements.
• Interface tests: all interfaces, all operational modes.
•

The Verification should identify:

• All hardware and software used.
• All the equipment used.
• All the equipment calibration.
• All simulation models used.
• All discrepancies found.

'Test' is used here in its wider sense, as encompassing all kinds of verification process. All information
related to the assurance work on AECS for critical applications should include the characteristics and
aspects summarized below.

5.2.1 Presentation of the test objective and tools.
This part should include an overview of the test object based on the requirements specification and
functional analyses. The following information should be derived:

• Presentation of the test object
o Purpose, application, function.
o General data and specification.
o Safety and non-safety concept of the whole system (hardware and software).
o Explanation of the structure and function of the hardware.
o Explanation of the structure and function of the software.

• Presentation of the test tools
o Applied test methods.
o Applied test equipment.

5.2.2 Detailed description of the tests.
In this part the test carried out should be listed and their results should be described in sufficient
depth to ensure complete understanding. The description part consists of all measurement
configuration, tables and diagrams (e.g. fault trees, FMEA-tables, flow-charts, listing reviews, specific
test results, wiring diagrams etc.) made in course of the whole testing work.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 36 of 44

 Tests that are available include:

• For hardware
o Functional analyses.
o Detailed failure analyses (FMEA, Error Sequence Analysis, quantification etc.).

• For software
o Functional analyses (black-box, white-box, etc.).
o Detailed failure analyses (investigations regarding structure and dependence/

independence of software modules).

5.2.3 Summary and Final Evaluation.
This should provide a short description of the whole test work and it should include:

• Functional principles of the test object
• Tests carried out
• Test conditions
• Applied test methods
• Final judgement in relation to the requirements.

5.2.4 AE Managers Verification and Quality
The AE Managers must guarantee an appropriate quality level and a proper verification coverage, at
least for the implementation part, to guarantee an efficient integration and operation with ACADA.

5.2.5 Software Maintenance Provisions
Any revision on AE managers code to be installed on the array needs to be properly tested and tagged.
Updating on the AE code must be coordinated with the TBD stakeholders. After any update a full
regression test must be carried out.

Appendix A– Iterative Process Tasks and
Activities

Requirements Analysis and Validation
The Requirement Analysis stage of the Iterative Process aims to determine the needs or conditions to
meet for the control systems under development, for purpose of establishing:

• what the system will be capable of accomplishing;
• how well system products are to perform in quantitative, measurable terms;
• the environments in which system products operate;
• the requirements of the human/system interfaces;

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 37 of 44

• the physical characteristics;
• the constraints that affect design solutions.

The tasks and activities associated with requirements analysis are described Table A.1. For more
details see [4].

After the analysis of requirements, the teams should perform the tasks of requirements validation
(summarized in Table A.2 of the Appendix) to evaluate if:

• the established requirements baseline represents the identified stakeholder expectations and
project constraints

• the system life cycle concepts have been adequately addressed.

Tasks Activity
Define and quantify the
Stakeholder expectation

- Define Functional Requirements [life cycle processes, and desired quality factors]
- Define Performance Requirements [how well each function is to be accomplished]
- Constraints [funding; cost or price objectives; schedule; technology; design characteristics;
hours of operation per day; on-off sequences; external interfaces; and specified existing
equipment, or procedures related to life cycle processes]

Identify and define
constraints that impact
design solutions

-Approved specifications and baselines developed by CTAO
-Engineering and technical plans/domain technologies
-Team assignments and structure/ Policies and procedures
-Automated tools availability
-Required metrics for measuring technical progress
-Reuse and commercial-off-the-shelf (COTS)
-Physical, financial, and human resource allocations to the technical effort

Identify and define
operational scenarios for
use and application of the
control system

- Define expected interactions with the user and other systems
- Define physical interconnections with interfacing systems, platforms, or products

Defines system
effectiveness measures
(MOE)

-Reflect overall stakeholder expectations and satisfaction, including performance, safety,
operability, usability, reliability, maintainability, time and cost to train, workload, human
performance requirements

Define System boundaries -Which system elements are under design control of the team and which fall outside their control
-The expected interactions among system elements under design control and external and/or
higher level and interacting systems outside the system boundary

Define External interfaces -functional and design external interfaces
- Identify interacting high-level systems (mechanical, electrical, thermal, data,
communication-procedural, human-machine)

Define utilization
environment for each
operational scenario

-Identify factors for system minimization of the potential for human or machine errors or failures
that cause injurious accidents or death.
- weather conditions (e.g., rain, snow, sun, wind, ice, dust, and fog), temperature ranges,
topologies (e.g., mountains, deserts), biological (e.g., animal, insects, birds, and fungi), time (e.g.,
day, night, and dusk), induced (e.g., vibration, electromagnetic, acoustic, and chemical)

Define life cycle process
concept

Analyze outputs of previous tasks to define life cycle process requirements necessary to develop,
produce, test, distribute, operate, support, train, and dispose of system products under
development (Manpower, Human Engineering and Safety must be included)

Define Functional and
Performance Requirements

- Perform functional context to define what the system should be able to do
- Define the performance requirements for each function of the system

Define Modes of Operation Defines the various modes of operation (embedded training capability, fully operational, etc.) and
the conditions (environmental, configuration, operational, etc.),
which determine the modes of operation

Define Technical
Performance measures

Identify the technical performance measures (TPMs), which are key indicators of system
Performance.

Table A.1: Tasks and Activity of the Requirements Analysis stage of Iterative Process

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 38 of 44

Tasks Activity
Compare to stakeholders
expectation

- analyzes and compares the established requirements against stakeholder expectations
- ensure that the technical requirements adequately represent the stakeholder’s needs,
requirements, and constraints

Compare to project
constraints

Ensure that the technical requirements correctly represent, and stay within, enterprise and
project policies and procedures, acceptable risk levels, plans, resources, technology limitations,
objectives, decisions, standards, or other documented constraints.

Compare to external
constraints

To ensure that the specified technical requirements correctly represent, and stay within,
applicable national and international laws (including environmental protection, hazardous
material exclusion lists, waste handling, and social responsibility laws); correctly state external
interface requirements with existing or evolving systems, platforms, or products; include
applicable general specification and standard provisions affecting the development; and
adequately define competitive product capabilities and characteristics.

Identify variances and
conflicts

The project identifies and defines variances and conflicts that arise out of the validation tasks.
Each variance or conflict is resolved by iterating through requirements analysis to refine the
requirements baseline.

Establish validated
requirements baseline

Once the established requirements baseline variations and conflicts are satisfactorily resolved,
the requirements baseline is considered valid. This validated requirement baseline is then used as
input to functional analysis (see 3.3) and documented in the integrated repository.

Table A.2: Tasks and Activity of the Requirements Validation stage of Iterative Process

Functional Analysis and Verification
The goal of functional analysis stage is to accomplish the following objectives:

• describe the problem defined by requirements analysis in clearer detail
• decompose the system functions to lower-level functions that should be satisfied by elements

of the system design (e.g., subsystems, components, or parts).

This is accomplished by translating the validated requirements baseline into a functional architecture,
which describes the functional arrangements and sequencing of subfunctions resulting from
decomposing the set of system functions to their subfunctions.

The project should conduct the functional verification to assess the completeness of the functional
architecture in satisfying the validated requirements baseline and to produce a verified functional
architecture for input to synthesis. The tasks associated with functional analysis and Verification are
identified in Table A.3 and A.4. For more details see [4].

Tasks Activity
Functional context and
functional behaviour
analysis

- Analyze each system function to determine the responses (output) of the system to
inputs necessary to accomplish system objectives
- Understand the functional behavior of the system under various conditions and
assess the integrity of the functional architecture

Define functional interfaces Defines functional interactions and identify interfaces
Allocate performance
requirements

Performance requirements are divided into allocable sets and are directly allocated to
functions

Functional decomposition Decompose the system into subfunctions based on what the system
must accomplish. Risk analyses are performed to select a balanced set of
subfunctions and to allocate performance requirements to subfunctions to assure
that the functional architecture satisfies the system requirements.

Define subfunctions Functions are decomposed in terms of their functional behaviors, states and modes of
operation, functional
time lines, conditions for control of data flow, functional failure modes and effects,
and potential hazard monitoring functions that are needed

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 39 of 44

Establish functional
architecture

Establish the functional architecture, appropriate to the level of development, to
define the allocation of performance requirements from which design solutions
should be determined via synthesis.

Table A.3: Tasks and Activity of the Functional Analysis stage of Iterative Process

Tasks Activity
Define verification
procedures

Defines the procedures for verifying the established functional architecture

Conduct verification
evaluation

Conducts defined procedures to:
-Verify architecture completeness
-Verify functional and performance measures
-Verify satisfaction of constraints

Identify variances and
conflicts

-If non-required functions and/or performance requirements were introduced during
functional analysis then functional analysis tasks are repeated to correct voids and to
eliminate non-required functions and/or performance requirements.
-If valid functional and/or performance requirements were derived they need to be
reflected in the requirements baseline and requirements analysis
and validation should be repeated to produce a revised, validated requirements
baseline

Establish verified functional
architecture

The functional architecture is verified upon satisfactorily resolving the variances and
conflicts identified.

Table A.4: Tasks and Activity of the Functional Verification stage of Iterative Process

Synthesis and Design Verification
The synthesis activity is performed to define design solutions and subsystems requirements based on
the verified functional architecture. It translates the functional architecture into a design architecture.
The most important tasks associated with synthesis are reported in Table A.5 (for more details see [4])
and involve selecting a preferred solution from a set of alternatives and understanding associated
cost, schedule, performance, and risk implications.

The established design architecture, appropriate to the level of development, should document the
design solution and interfaces. The design architecture includes the requirements traceability and
allocation matrices, which capture the allocation of functional and performance requirements among
the system elements.

The Verification process of the design architecture produced should be accomplished to demonstrate
that the architecture satisfies both the validated requirements baseline and the verified functional
architecture.

The tasks associated with design verification stage are Summarized in Table A.6.

Tasks Activity
Group and allocate
functions

Group common functions and subfunctions of the verified functional architecture into
logical functional elements in a manner that permits their allocation to design elements.

Identify design solution
alternatives

Generate alternative design solutions for the functional elements identified (hardware,
software, material, data, facility, people, and techniques).

Assess different design
alternatives

Analyzes alternatives to:
- Identify potential hazards to the system, humans involved in the system and supporting
the system life cycle processes.
- Determine the degree to which quality factors (producibility, testability, ease of
distribution, usability, supportability and disposability) have been included in the solutions.
- Identify the design characteristics and human-engineering elements associated with life
cycle quality factors.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 40 of 44

- Determine the technological needs necessary to make the design solution effective.
- Identify and define the physical interfaces among products, subsystems, humans, life cycle
processes, and external interfaces to higher-level systems or interacting systems.
- Assess whether use of standardized end items would be technologically and economically
feasible.
- Determine availability of an off-the-shelf item (non-developmental hardware or software)
- Assesses failure modes, the effects, and the criticality of failure for design alternatives.
- Assesses the testability of design alternatives to determine built-in test (BIT) and/or fault
isolation test requirements to support operational or maintenance considerations.

Identify make-or-buy
alternatives

Perform economic analysis of design alternatives to support make-or-buy decisions to
address whether it is more cost-effective for the project to produce the design element vs.
going to an established supplier.

Design selection and
verification

Develops models and/or prototypes to assist in:
-Verify that the selected design solution (made up of hardware, software, material,
humans, facilities, techniques, data, and/or service) meets allocated functional and
performance requirements, interface requirements, workload limitations, and constraints.
-Verify that the selected design solution satisfies functional architecture and requirements
baseline requirements.

Assess FMEA A failure modes and effects analysis (FMEA) should be used to identify the strengths and
weaknesses of the selected design solution.

Assess testability needs BIT mechanisms should be provided for the elements that are normally maintained by the
operators, users, or field support engineers belonging to the selected design solution. BIT
can be used for diagnostic operations to support lower-level maintenance actions.

Finalize design Finalize the design for the selected alternative. The designation and description of
interfaces (internal and external) among design elements are finalized.

Produce integrated data
package

Completes the drawing, schematics, software documentation, manual procedures, etc., as
necessary, to document the selected design elements in an integrated data package.

Establish design
architecture

Establishes the design architecture, appropriate to the level of development, to document
the design solution and interfaces. The design architecture includes the requirements
traceability and allocation matrices, which capture the allocation of functional and
performance requirements among the system elements. Design architecture definitions
should be documented in the integrated repository, along with trade-off analysis results,
design rationale, and key decisions to provide traceability of requirements up and down the
architecture.

Table A.5: Tasks and Activity of the Synthesis stage of Iterative Process

Tasks Activity
Define verification activity - Select Appropriate Verification Method (Inspection, Analysis, Demonstration, tests)

- Develop a verification Matrix and select the models or prototype to be used
- Define procedures for each verification methods selected and defines the criteria for
determining the success or failure of the procedure for planned and abnormal conditions

Conduct verification
evaluation

The verification activity should verify the following:
- Design elements descriptions are traceable to functional architecture requirements
- Functional architecture requirements are allocated to the design architecture
- Internal and external design interfaces are traceable to their source requirement
- Evaluation results satisfy the constraints of the functional architecture
- Constraints of the established design architecture are traceable to the validated requirements
baseline

Identify variances and
conflicts resulting from
verifying activities

When variances show incompleteness, synthesis tasks or functional analyses tasks are repeated
to correct omissions:
- to eliminate non-required functions and/or performance requirements
- to produce a new validated requirements baseline and verified functional architecture.

Verified design architecture The design architecture is verified upon satisfactorily resolving the variances and conflicts
identified and documented in the integrated repository.

Establish specifications and
configuration baselines

Develop/update product and interface specifications appropriate to the stage of development for
each element of the design architecture.
Develop/update appropriate configuration baselines for each element of the design architecture.
The hierarchy of specifications (product and interface) for the design architecture forms the
specification tree appropriate for the stage of development.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 41 of 44

Develop system breakdown
structure

The project develops an SBS for the system designed, including life cycle process requirements

Table A.6: Tasks and Activity of the Design Verification stage of Iterative Process

System Analysis and Control
Systems analysis provides a rigorous quantitative basis for establishing a balanced set of requirements
and for ending up with a balanced design. The most important tasks associated with systems analysis
are identified in Table A.7.

The control activities are applied for the purpose of managing and documenting the activities of

the Iterative Process. The tasks associated with control are identified in Table A.8 and provide the
following:

• A complete and up-to-date picture of Iterative Process activities and results, which are used
in accomplishing other activities

• Planning for and inputs to future applications of the Iterative Process
• Information for production, test, and support
• Information for decision makers at technical and project reviews

The Control activities are intended to be practiced within internal team only and must be organized
based on the central guidelines provided by the CTAO for the related tasks [Ref].

Tasks Activity
Assess requirement conflicts Assesses conflicts among requirements and constraints identified during requirements

analysis to identify alternative functional and performance requirements, where necessary.
Assess functional alternatives Assesses possible alternative subfunction arrangements for the decomposition of a function

and for the allocation of allocable performance requirements to the subfunctions during
functional analysis

Assess design alternatives Assesses potential groupings and allocations of functions from the verified functional
architecture and identified design alternatives during synthesis

Identify risk factors Assesses and constraints requirements made during synthesis, and design elements of the
design architecture to identify the risk factors.

Quantify risk factors Quantify the impact of identified risk factors on the system. For system effectiveness
assessments, each element of the system architecture is assessed to determine what can
go wrong, and if it goes wrong, what impact it may have on the system.

Design effectiveness
assessment

Determine the system design effectiveness based on the results of the assessments and
analyses. The results of the assessments and analyses are documented in the integrated
repository and briefed at appropriate technical and project reviews.

Table A.7: Tasks and Activity of the System Analysis stage of Iterative Process

Tasks Activity
Technical management Manage the tasks and activities of the Iterative Process to control data generated,

configuration of the design solutions, interfaces, risks, and technical progress. Setting up
appropriate repositories and procedures is included.

Track systems analysis and
test data

Collect, analyze, and tracks data from systems analyses to document activities, rationale,
recommendations, and impacts, and from tests to document results, variances, and follow-
up activities.

Track requirement and
design changes

Collects and sorts data to track requirement and design changes and to maintain
traceability of change source, processing, and approval.

Track progress against
project plans

Collects and sorts data reflecting plan activities and tracks progress against the engineering
plan, master schedule, and detail schedule.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 42 of 44

Track product and process
metrics

The project collects, analyzes, and tracks product and process metrics to:
- Determine technical areas requiring project management attention
- Overall system quality
- Early detection of problems

Update specifications and
configuration baselines

Update specifications and configuration baselines to reflect all changes.

Update requirements views
and architectures

Update requirements views and the functional, design, and system architectures to reflect
changes brought about by an acquirer, systems analysis, validation and verification
deviation, or management decision.

Update technical plans Update the technical plans to reflect changes brought about by an acquirer, systems
analysis, plan activity deviation, or management decision.

Integrated repository Establish and Maintain a repository of all pertinent data and information from previous
tasks.

Table A.8: Tasks and Activity of the Control stage of Iterative Process.

Appendix B– Verification Activity

PLC Verification Procedure
Since the PLC technology is wide used for the development of the low-level Array Element Control
Systems (LCS) here it is presented a verification method that usually is applied to the PLC-based
systems. This method normally concentrates on the application software and the integration of the
whole system to demonstrated that the hardware as well as the software system meets the
requirements for a specific application. The procedure is divided into the Analytical Approval and
Operational Approval.

The following concrete steps are conducted during the Analytical Approval:

• Inspection of the documentation with respect to completeness, validity and consistency
• Verification and quality evaluation of logic diagrams
• Verification and quality evaluation of the application software:

o The application software is verified with respect to the specifications and the logic
diagrams which have to be pre-verified by the process engineer.

o Extraction of all safety critical parts (modules, subroutines) of the software.
o Control flow and data flow analysis.
o Verification of all specified functions.
o If possible, simulation of all functions and time behavior under normal and erroneous

conditions on a simulator (recommended).
o Verification of hardware design and installation documents.

The following stages are conducted during the Verification/Quality process during the Operational
Approval.

• Test of the installation of the PLC system with respect to:
o Field wiring (e.g. separate installation of redundant wiring).
o Protective and functional earthing.
o Noise and transient suppression measures (separation of cables for inputs, outputs

and power circuits, correct length of wiring, separation of the field wiring from
internal I/O cabling and from bus lines, control of mechanical contacts which are in
series with inductive loads).

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 43 of 44

o Test of compliance with the actual service and environmental conditions (e.g.
temperature, shock and vibration, electromagnetic influence).

o Interaction between PLC and process periphery (loop checks)
o Binary I/O, checking binary and digital input signals to ensure that physical states of

sensors comply with signal latches (memory elements) in the PLC, checking that no
forced binary and digital outputs are set.

o Analog I/O, checking analog input signals to ensure equivalence of physical value and
data received by the PLC. Supervised inputs and outputs: detection of opens and
shorts.

• Test all system functions. During these tests, the functional behaviour of the system with
respect to the specified functions is validated. All functions are being tested under operational
conditions.

• Perform Fault simulations that are conducted based on a pre-defined list of failures, which
involves:

o Sensors, contacts and actuators.
o Inputs and outputs.
o Field wiring (e.g. exchanged connections).
o Interlocks.

During failure simulations, it may be validated that the system (in the case of failures) is being
brought into a safe state.

 CTAO System Control Development
Guidelines

CTA-TRE-SEI-000000-0017-1a
05 October 2022

Page 44 of 44

	1 Introduction
	1.1 Scope
	1.2 Applicable and reference documents
	1.2.1 Applicable documents
	1.2.2 Reference documents

	1.3 General Definitions

	2 Control System Engineering Life Cycle
	2.1 System-Level Definition
	2.1.1 Constraints
	2.1.2 Identify Variance and Conflicts
	2.1.3 Outcome - Deliverables

	2.2 Preliminary Design
	2.2.1 Constraints
	2.2.2 Identify Variance and Conflicts
	2.2.3 Outcome – Deliverables

	2.3 Detailed Design
	2.3.1 Constraints
	2.3.2 Identify Variance and Conflicts
	2.3.3 Outcome – Deliverables

	2.4 Implementation
	2.5 Assembly, Integration and Test
	2.6 System Verification Stage
	2.6.1 Non-Compliance

	2.7 Tools and Methodologies
	2.7.1 Software Tools
	2.7.2 SW tools for AE Managers

	3 General Requirements for Control Systems
	3.1 PES Requirement Specification
	3.1.1 Non-Safety requirement specifications
	3.1.2 Safety requirement specification
	3.1.3 Safety integrity requirement specification
	3.1.4 State Machine

	3.2 PES Interface Requirements
	3.3 Array Elements Manager Specification Requirements
	3.3.1 Interfaces with ACADA
	3.3.2 State Machine

	3.4 Monitoring, Storage and Display Specification Requirements

	4 Sub-systems Definition for Array Elements Control Systems
	4.1 Design Specification
	4.1.1 Hardware Design
	4.1.2 Software Design
	4.1.3 Fault Management
	4.1.4 BIT tests
	4.1.5 Safety Units and Safety Functions

	4.2 Implementation
	4.2.1 Hardware
	4.2.2 Software
	4.2.3 Array Managers
	4.2.3.1 Realization of interface with ACADA
	4.2.3.2 Code implementation
	4.2.3.3 Runtime environment

	4.3 Assembly, Integration and Test Stage
	4.3.1 Integration
	4.3.1.1 Mock-up versions
	4.3.1.2 Integration with ACADA
	4.3.1.3 Unit Testing

	4.3.2 Testing
	4.3.3 Safety-Functions Testing

	5 Verification and Quality Assessment
	5.1 Audits and Review during the Cycle
	5.2 System Verification Testing during the cycle
	5.2.1 Presentation of the test objective and tools.
	5.2.2 Detailed description of the tests.
	5.2.3 Summary and Final Evaluation.
	5.2.4 AE Managers Verification and Quality
	5.2.5 Software Maintenance Provisions

	Appendix A– Iterative Process Tasks and Activities
	Requirements Analysis and Validation
	Functional Analysis and Verification
	Synthesis and Design Verification
	System Analysis and Control

	Appendix B– Verification Activity
	PLC Verification Procedure

		2022-10-18T15:58:22+0200
	Elisa Antolini

		2022-10-19T09:42:47+0200
	Nick Whyborn

		2022-10-31T14:03:42+0100
	Wolfgang Wild

