cherenkov
telescope
array

Software Programming Standards

Name Date Signature

Digitally signed by
KOSACK Karl
KOSACK Karl Date: 2020.01.23 13:48:26

Prepared by | K. Kosack (CTAO, CEA Saclay) o
Stefan gii?ji:a“ytsigtned by Stefan
Approved by | S. Schlenstedt (CTAO) Schlenstedt i 2ooL213s417

Released by | W. Wild (CTAO

;cta CTA Construction Project Page 1 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a

Software Programming Standards

Document Properties

1 a 2020-01-23 | Release version. Replaces docu- | CTAO Comput- | CTA
ment SYS-STAND/161012. ing

draft | 0.3 | 2018-02-01 | Alignment with the system sim- | all
plification planning and minor up-
dates.

draft | 0.2 | 2017-03-29 | Incorporated first round of com- | all
ments from PC. Incorporated ad-
ditional comments received from
A. Okumura, D. Hoffmann, J.
Schwarz, M. Punch, |. Sadeh, D.
Melkumyan, T. Le Flour, E. Lyard.

draft | 0.1 | 2016-09-06 | Preliminary draft originally incor- | all
porated into the Software Develop-
ment Plan & Standards. Released
as SYS-STAND/161012.

Francesco Dazzi CTAO All chapters
Matthias FUBling CTAO All chapters
Igor Oya CTAO All chapters
Gino Tosti CTAO, Univ. di Perugia All chapters
CTA Construction Project Page 2 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
@ Software Prl;grlamminjg Standards [esue T Rev

Table of Contents

Table of Contents

Table of Contents e 3
1 Introduction 4
1.1 PUIPOSE . . . 4
1.2 SCOPE . . . o 4
2 Computing Environments 5
3 Languages 7
4 Code 8
41 Code Style 8
42 CodeDesign e 10
4.3 Code Documentation and Comments 12
4.4 Functionality and Quality Tests 12
5 Development Environments 14
5.1 Compilers, Interpreters, and Runtime Environments 14
5.2 External Libraries and Dependencies.o 14
6 Version Numberingand Releases 16
7 Licensing 17
References 18
Glossary 20
ACrONYMS L e 21
CTA Construction Project Page 3 of 21 CTA-STD-0S0-000000-0001 | Issue 1 | Rev.
(2. Soitware Programming Standards e s R e

1. Introduction

1 Introduction

The Cherenkov Telescope Array (CTA) construction project will encompass a wide range of software
sub-projects covering, but not limited to, integrated control systems, common array-control software,
data processing software, Graphical User Interface (GUI) software, science tools and computing sup-
port. There will be also several operating environments and frameworks such as embedded systems,
ALMA Common Software (ACS) components, grid/batch jobs, web front-ends, and end-user laptop ex-
ecutables. It is challenging to choose standards that work in all cases, therefore this document provides
the minimal programming standards for software developed for the CTA construction project.

1.1 Purpose

The purpose of this document is to guide the software developers in the production of products (here-
inafter referred to as CTA software) that can be easily understood, operated and maintained by the
Cherenkov Telescope Array Observatory (CTAO) personnel over a long period of time. The standards
presented in this document can evolve in time to better suit the needs of both software development
teams (suppliers) and CTAO (customer), responsible of the CTA construction project. Therefore, this
shall be considered as a living document. Each software development team may produce more strin-
gent standards that are applied internally to the teams. These internal standards may be used to improve
this document in a subsequent revision.

1.2 Scope

The software programming standards presented in this document apply solely to new software explicitly
written for the CTA construction project. They do not apply to existing frameworks or legacy software for
which standards already exist (e.9. ACS, sim_telarray, etc). Moreover, this document does not cover the
programming standards for embedded software and firmware written for controlling devices like Field
Programmable Gate Array (FPGA), Programmable Logic Device (PLD), Programmable Logic Controller
(PLC), microcontrollers, etc. These domain-specific programming standards will be treated in dedicated
documents.

The applicable standards are indicated in this document with the verb “shall’, whereas the others are
guidelines and recommendations that the software development teams are encouraged to consider. The
CTA software that is being developed for the Critical Design Review (CDR) shall be compliant with these
applicable standards.

This document follows the CTA definitions [1] and is an update of and supersedes the document previ-
ously released with document number SYS-STAND/161012.

cta CTA Construction Project Page 4 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

2. Computing Environments

2 Computing Environments

The CTA computing environments, namely the combination of operating systems and computing hard-
ware, can be generally divided into three categories, hereafter described.

Production Environment: the computing environment where the software is executed at a data centre
or grid site, including all necessary dependencies.

Development Environment: the computing environment where the software is developed (e.g. devel-
oper’s local machines), which includes an Integrated Development Environment (IDE), compiler
or interpreter, all necessary dependencies, common libraries, and the ability to run the unit test
suites.

Integration Environment: the computing environment where the software is continuously integrated:
compiled, tested, and packaged for distribution, including the building of all documentation. This is
generally an identical system to the production environment, but may include e.g. cross-compilation
and packaging for developer machines as well. This includes supported compilers/interpreters,
all dependencies, as well as any software and data necessary for running the unit and integration
test suites.

The production and integration environments will be based on Linux Red Hat Enterprise (RHEL) re-
compiled distributions (e.g. Scientific Linux and CentOS), and are tightly linked to the software available
at the computing centres. These are the minimal systems on which CTA software shall compile and
run. The development environment is however more flexible to accommodate the needs and comfort
of the people writing software. Developer’s machines may run for instance more user-oriented Linux
systems as well as macOS machines. Nevertheless, it shall be verified that all software committed to
the repositories compile (for compiled languages), pass all code-quality and functionality tests, and run
on the production and integration environments."

The CTA standard computing environments are as follow.

+ Production Environment: RHEL re-compiled distribution (e.g. Scientific Linux and CentOS)?

» Development Environment: any operating system (e.g. CentOS, macOS Catalina, Windows 10)
and IDEs supported by the respective provider and common libraries chosen by CTAO (e.g. see
section 5.2).

+ Integration Environment: RHEL re-compiled distribution (e.g. Scientific Linux and CentOS),
with optional additional support for testing and packaging on developer systems (e.g. macOS or
Windows 10).

The software developers contributing to the CTA construction project shall ensure that the delivered
software is tested and works on the final production and integration environments chosen by CTAO.
Lightweight virtualization (e.g. Docker Containers) may be used to achieve some independence from
these standard environments, however software shall still build correctly in the final production and inte-
gration environments, and it shall also be possible to build and execute the container in that environment.

"Further details on these environments are planned for a future version of the document.
2The specific version of the production environment will be defined in a future release of this document.

cta CTA Construction Project Page 5 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

2. Computing Environments

For the integration of the CTA software, the CTAO will implement a central Continuous Integration (Cl)
system that will be specified in a subsequent version of this document.

cta CTA Construction Project Page 6 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

3. Languages

3 Languages

The general principle is: keep code simple, clear, clean', and well-documented. Over the life of CTAO
(30 years?), many software developers/maintainers will need to read and modify what others have
written, and it therefore shall be easy to follow and understand.

The programming languages and minimum versions accepted by CTAO are hereafter listed.

» C++: version 11 (International Organization for Standardization (ISO)/International Electrotechni-
cal Commission (IEC) 14882:2011) or a later ISO standard.

 Java: Oracle Java SE JDK version > 11. The use of a later major version of Java will depend on
when it will be adopted by ACS.

» Python: version > 3.6. Compiled Cython extensions are allowed.

» JavaScript: ECMAScript version > 5 is allowed, but only for web-based user-interfaces and visu-
alizations.

Exceptions are authorized (after justification to the CTAO) only in specific cases where the chosen
standard language prevents compilation due to the requirements of underlying libraries (e.g. ACS). The
addition of other languages is discouraged to minimize the complexity of long-term maintenance, but
might be not forbidden if a strong technical justification is made to the CTAQ.

The scripting languages (short glue code to connect a series of executables) accepted by CTAO are
hereafter listed.

+ Python: version > 3.6 shall be used for any complex scripting.

» BASH: version > 4.1 is allowed solely for simple cases and its use shall be justified in the code
documentation.

In general, piping together several executables and redirecting output is more appropriate in BASH,
whereas a more complex chain with if-statements, complex loops, machine-independence, sub-routines
or command-line parsing is better implemented and maintained with Python, which has more complete
debugging and testing support.

A recommended book is [2].
2and beyond for higher-level data management software.

cta CTA Construction Project Page 7 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

4. Code

4 Code

4.1 Code Style

Coding standards help to keep the code readable and maintainable by a large group of developers who
may be all working on the same file simultaneously. Common code style rules are particularly important
when using revision control systems (e.g. Git) since the format of code is used to track changes and
merge updates from multiple developers. The style of code will be checked and evaluated by automated
systems (e.g. SonarQube or TravisCl) connected to the Cl system, allowing managers to monitor and
enforce rules.

The coding standards depend on the languages used and they refer to the accepted languages listed in
section 3. The following rules are considered for general code formatting/ style:

» C++: use Google style (https://google.github.io/styleguide/cppguide.html) and follow the
recommendations in the C++ Core Guidelines.

» Python: use PEPS8 style (https://www.python.org/dev/peps/pep-0008/).

+ Java: use Google style (https://google.github.io/styleguide/javaguide.html).
The previous rules are valid unless superseded by the following CTA specific style rules:

Human Language
All variable names, comments, and documentation shall be in English. The choice of spelling
(American vs. British) should be consistent within a Work-package.

Indentation
Four spaces (not tabs) shall be used for indentation in all languages. In C++ this can be achieved
for instance using in clang-format the IndentWidth:4 option, and in Emacs setting c-basic-offset
option.

Line Length
The line length shall by at maximum 90 characters so that the code can be displayed in two to
three columns on a normal display (useful when merging). Most code re-formatting tools do this
by default (e.g. black for python or clang-format for C++)

Variable Naming
The variable names shall:

* be obvious and un-abbreviated, using full English words with consistent spelling, with the
exception of:
— integer loop indices, where the recommendation is to use a descriptive name starting
with /, j, k, such as i_tel, j_pix;
— very compact loops (maximum of a few lines of code), where the full body of the loop can
be seen without scrolling - smaller indices like i or j are acceptable, though two-character
indices are recommended’;

— lambda-expression place-holders;
— list/set/generator comprehension place-holders;

» be longer than a single character, except in the cases listed above;
* be lower-case, or at least start with a lower-case letter;

"Variables longer than one character are useful for search/replace operations (replacing all uses of i with i_tel is not easy,
but ii is), as well as for visual identification (is the index a 1 or an i?).

cta CTA Construction Project Page 8 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

https://google.github.io/styleguide/cppguide.html
https://github.com/isocpp/CppCoreGuidelines
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/javaguide.html

4. Code

4.1 Code Style

use underscores to separate words or camelCase if used consistently within a Work-package,
but avoid mixing various conventions;

have the unit name appended if the variable may have ambiguous units. This is not needed
if a common unit-tracking library (e.g. astropy.units® or Boost::Units®) is used. In the
case a common unit library cannot be used, it is good practice to choose a common set of
units and enforce them (e.g. require that all angles within a Work-package are in radians and
are never expressed in degrees), and continue append the unit to the variable name to avoid
ambiguity.

Good examples are:

max_energy_tev;
pixel_rotation_angle_deg;

likelihood.

Bad examples are:

n;
rdval;
prot;
p_rot.

It is recommended to use an editor with the auto-completion function in order to facilitate the typing
of long variable names.

Function/Method Naming
The function names shall:

start with a verb and be clear as to what they do (avoid abbreviations);

use a consistent capitalization style* depending on the language (e.g. camelCase for Java
and C++, underscore_separated for Python);

use properties instead of setters/getters for access to simple internal variables if the lan-
guage supports them (e.g. Python);

use common wording whenever possible, at least within the Work-package (e.g. do not have
a function make_parameters() and then another generate_other_parameters(), keep the
wording consistent);

have a correct and consistent spelling (avoid get_first_color(); get_2nd_colour(););

use named parameters if the language supports them, (e.g. Python) when an argument list
is long or ambiguous. l.e. prefer calling multi-parameter functions using names to location-
based parameters.

Good examples are:

readCTAOptions();
read_cta_options();

make_rectangle(center=(10, 10), width=10, length=50)) if using Python, which sup-
ports named parameters;

or if C++ use clear types like make_rectangle (Point (10,10), WidthLength(10, 50);
number_predicted(), predicted_counts()

apply_energy_correction(energy_tev).

Bad examples are:

readCTAoptions () (inconsistent capitalization)

®http://docs.astropy.org/en/stable/units/
Shttp://www.boost.org/doc/libs/1_61_0/doc/html/boost_units.html
4Note abbreviations like CTA shall be all caps when using camelCase, and the following word shall still be capitalized.

cta CTA Construction Project Page 9 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

http://docs.astropy.org/en/stable/units/
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_units.html

4. Code 4.2 Code Design

* doIt() (unclear purpose)
* make_rectangle(10,10,10,50) (unclear arguments)
» npred () (non-obvious abbreviation)

Classes
Classes shall:

* use CapWords style (start with capital letter, no underscores);

* have subclass names that end with the parent class name when possible, to make the rela-
tionship clear (e.g. FileWriter = FITSFileWriter, TextFileWriter);

» use namespaces (C++) or packages (Python, Java) that group common classes and related
functions.

4.2 Code Design

The following rules apply for the CTA software code design:

Object Orientation
For code that is object oriented the developer shall:

+ identify and follow common object-oriented design patterns (see e.g. https://en.wikipedia.
org/wiki/Software_design_pattern);

 generate class hierarchies that are consistent and make sense - class B shall only be a
subclass of class A if the phrase “B is an A” makes grammatical sense, if not, the developer
might consider encapsulation (*A has a B”) instead of inheritance, or use a different design
pattern;

* not overuse classes and class-hierarchies, because not everything must be a class and in
many cases plain functions outside of classes can be more flexible.

Public API Design
For any code that exposes a public Application Programming Interface (API) intended to be used
by other developers, the developer shall:

» separate the functions/classes/methods/variables that are part of the API from functions
that are meant to be internal/ private;

» shall mark as “deprecated” in the documentation (and code if the language supports it) the
API functionality that is to be removed in the next release(s), to signal to developers using it
that they need to consider changing their dependent code.

Error Reporting
The error reporting shall have the following characteristics.

« Descriptive exceptions (if the language supports them) shall be used for error handling (but
not for flow-control) and shall be caught and handled as soon as possible®.

» The specific exception types shall be defined for failure modes that extend built-in generic ex-
ception classes like RuntimeError (std::runtime_error), ValueError (range_error), etc.
The generic exception classes shall not be used directly, but sub-classed/extended with de-
scriptive names.

» The exceptions shall include a descriptive message that can help a user to understand what
lead to the exception and what value caused it. For instance, if the exception is of type
FileNotFoundError, the message shall contain the file name with full path that was expected.

5Note that this rule does not agree with the Google coding guidelines, which recommend avoiding exceptions due to legacy
code that does not support them. Because this document pertains to new code only, there is no strong issue against the use of
exceptions.

cta CTA Construction Project Page 10 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern

4. Code

4.2 Code Design

The exception description shall be written assuming the reader is not an expert in the soft-
ware. Note that in the case of a problem, exception names and descriptions are what will
be seen by the software end-user or operator, who are not experts in the software’s internal
design. Therefore, the message shall help them to resolve the problem or to provide a useful
bug report.

Status return codes may also be used for cases where the error is not critical, is used for
control flow, or is likely to occur at a very high rate. However, these codes shall be well-
documented and used consistently (e.g. if 0 means fail in one case, it may not mean succeed
in another). The strong recommendation is that if error status codes are used, the conventions
and enum definitions specified in the C standard library in errno.h shall be used (0 = success,
positive numbers are standard error codes), and negative error codes may be defined for
anything that is not covered (user-defined).

If calling a library function that throws exceptions, they shall be handled in your module if
possible, and re-thrown as a custom exception if necessary.

Console Logging
Any console output from CTA software shall:

use the same logging packages (or functions) (e.g. the logging module in Python) within a
Work-package, avoiding bare print or std::cout statements, ideally with at least 4 levels
message intensity: debug, info, warning; error / alert so that the user can determine the
severity or usefulness of the output;

format log messages in a common (and ideally globally modifiable) way - for example when
executing a piece of CTA software code, one user/system may want the level + program name
+ timestamp + log message, while another needs the IP of the execution machine or the line
number and file-name of the code block that emitted the message in addition, nevertheless
with a small amount of foresight and a flexible logging system®, it is possible to accommodate
these cases without having to change each line of code where text is written to the console;

have the ability to change the log verbosity level (e.g. to filter out debug output from important
warnings);

use a high-level logging system if it is provided in the underlying software library (e.g. ACS).

For small or low-level executables, it may be possible to archive common logging by using an
external wrapper that formats messages in a common format rather than implementing the logging
internally.

Configuration
For any CTA software configuration process the developer shall:

not store in the code parameters that may need updating over the life of CTAO, but rather in
an external configuration file, table, or database that the code reads at run-time, along with
documentation on how/when to update that value;

consider using a common configuration system or at least common file format for text-based
user-level configuration parameters when a database is not used, rather than inventing a
custom format for each use (recommended examples include YAML, INI, XML, JSON).

Miscellaneous
Other good practices are hereafter presented.

Avoid undocumented bare constants in an expressions or formulae. Ideally, define them
as constants in a common file for re-use. A good example is energy_tev = J_TO_TEV *
energy_j and a bad one is energy=6241509.343260179 * energyO. In the case a formula
used has some specialized constant factors in it that are not common elsewhere, make sure
they are documented in the comments immediately before their use or in the function docu-
mentation, with references if applicable.

Use a common package for physical constants, rather than redefining them in multiple source
files (example astropy.constants, GSL constants, or a project-defined common local pack-
age). This includes definitions of = and common conversion factors.

6This can even be achieved with simple C++ preprocessor directives wrapping standard console output functions.

cta CTA Construction Project Page 11 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

4. Code 4.3 Code Documentation and Comments

» Keep the length of functions or methods to something that can be read in approximately one
screen-full at a typical font size. Very long functions generally indicate bad coding and over-
complexity. They should be broken into simpler, more readable components.

+ Avoid deep nesting of if/else statements and other flow-control statements. Instead re-factor
to avoid bugs and difficulty in understanding the flow.

4.3 Code Documentation and Comments

Developer (API) Documentation
The APl documents shall contain:

« a description for all functions (except obvious things like setters/getters), including any side
effects of the function being called, a list of the inputs/outputs, and return values that shall
be accompanied by simple descriptions of each including their expected data types;

 adescription of the purpose and usage of all classes and modules;

« class diagrams (both hierarchies and collaboration diagrams may be useful).
API documentation shall be written in-code using a tool that can auto-generate APl documents.
Recommended tools are:

» C++: Doxygen.

+ Python: Sphinx using AstroPy / NumPy documentation conventions inside docstrings’.

« Java: Javadoc and Doxygen.

For small projects, the software developers may also write such documentation by hand. It is
recommended to avoid a heavy use of HTML tags.

Commenting
Comments in the code shall help a reader (typically another developer) to understand quickly what
a piece of code does or intends to do, when it is not obviously clear from the code itself, and also to
give the rationale for why the code was written or designed the way it was (i.e. why one algorithm
was used, when another was available). They need not be extremely detailed, but shall be written
assuming a new developer reads them along with the code. Trivial comments for functions that
simply repeat the name of that function shall be avoided.

User Documentation
In addition to APl documentation, end-user documentation shall be provided for all CTA software.
This may include:
* high-level explanation of the software as a whole;
* guides to running any executable tools, GUIs, etc;
« technical descriptions of algorithms used, with references;
* FAQs, troubleshooting, etc.
The user documentation may be written using the same tool adopted for the developer documen-
tation or another tool (even a plain Word, ReStructuredText, Markdown or LaTeX document), as

long as it is updated regularly with the code. In a future release of this document, CTAO reserve
the right to release templates or documentation styles for the user documentation.

4.4 Functionality and Quality Tests

Unit Tests All Code developed for CTA shall include Unit Tests covering at least 60% of lines of code
(80% for Python and non-compiled code) at the level of functions, methods, and classes.

"http://docs.astropy.org/en/stable/development/docguide . html

cta CTA Construction Project Page 12 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

http://docs.astropy.org/en/stable/development/docguide.html

4. Code 4.4 Functionality and Quality Tests

Other Functionality Tests Standards for other tests, for example regression, integration, and perfor-
mance tests, will be covered in the Software Quality Assurance Plan [3]

Quality Tests All code developed for CTA shall pass a predefined set of code quality tests, to be defined
in the Software Quality Assurance Plan [3].

cta CTA Construction Project Page 13 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

5. Development Environments

5 Development Environments

5.1 Compilers, Interpreters, and Runtime Environments

As the production environment of the CTA software will change over time during the operation of CTA, it
is essential for the long-term maintainability that CTAO is able to recompile and install the CTA software
from source in a reproducible and easy way. Thus, the CTA software shall be delivered as a software
package with full installation instructions and documented dependencies on external libraries, compiler
versions, interpreters, compile and runtime environments. To this regard, CTA software code shall com-
pile using any compiler/interpreter that provides full support for the language used (accepted languages
are listed in section 3). Reliance on a specific compiler or compiler version or compiler-specific features
(non-standard pragma commands, etc) shall be avoided to allow future upgrades. The code shall be
tested via a Cl system against multiple compilers. Recommended compilers are’:

* C++: g++ (GCC, http://gcc.gnu.org), Clang++ (Clang or Apple LLVM, http://clang.1llvm.
org);

» Python: CPython + Cython from the Continuum Analytics Anaconda distribution (https://www.
continuum.io);

« Java: Oracle Java SE version 8 runtime environment.

Compiler options to enable standard warnings (e.g. -wall for g++) shall be used at all times, and code
that is intended for a stable release shall not produce any warnings when compiled in the integration or
production environment.

5.2 External Libraries and Dependencies

Common libraries across software products shall be used to minimize maintenance and allow for bug-
fixes to propagate globally. Table 5.1 shows a list of common libraries for the accepted languages that
are convenient for various situations. This list also includes the libraries for coordinate transformations
that shall be used in the array and telescope control software.

The list of dependencies and their working versions for a particular software package shall be maintained
by the Work-package managers. All external dependencies shall be chosen with maintenance and
longevity in mind. All dependencies are considered part of the deliverable software package, even if
they are not maintained by CTA developers. Therefore, external libraries shall only be chosen that are
both well-maintained and are expected to be maintained over a long period of time. If this cannot be
ensured, the software managers shall have an explicit contingency plan for what to do if an essential
library is no longer maintained by the external community. Some recommendations to this point are
hereafter provided:

» Use some form of abstraction to separate the API of external libraries that may be replaced or
changed in the future with the API of internal CTA software code. Provide a common wrapper for

"Recommendations will adapt to the evolving support for the different compiler versions.

cta CTA Construction Project Page 14 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

http://gcc.gnu.org
http://clang.llvm.org
http://clang.llvm.org
https://www.continuum.io
https://www.continuum.io

5. Development Environments 5.2 External Libraries and Dependencies

Recommended Common Libraries

Celestial coordinate transfor-

mations and ephemerides ERFA (SOFA) AstroPy (ERFA) JSOFA
Temporal coordinates ERFA (SOFA) AstroPy (ERFA) JSOFA
Numerics / statistics GSL SciPy / NumPy Apache Commons Math

SciPy, Scikit-Learn, iMinuit

Fitting / optimization GSL, Minuit (Minuit) Apache Commons Math

Linear algebra GSL (BLAS) , Eigen SciPy (BLAS) Apache Commons Math

Unit Tracking TBD Astropy.units TBD

Custom socket I/O ZeroMQ ZeroMQ ZeroMQ

FITS file access cfitsio, gammalib AstroPy, fitsio (cfitsio), nom-tam-fits
gammalib

U] €1 EEEEED) (Il ACS=2017.06 ACS=2017.06 ACS=2017.06

ware

Table 5.1 — Common libraries per accepted language. Underlying libraries are shown in parenthesis, when applicable.
This table does not represent all acceptable libraries, only those which are recommended for cross-compatibility between
Work-packages. The full list of library dependencies for a Work-package is left to each Work-package development team,
and collected centrally. If more commonalities are found, this list will be updated in a subsequent version of this document.
Options marked with TBD are not yet standardized.

a particular functionality that hides the details of which library implements it, thus allowing a new
implementation to be swapped in without affecting existing code.

« Estimate the amount of effort and time needed to re-factor existing code to use a new library.

* In the worst case, consider taking over maintenance of this library internally, and calculate the
expected manpower needed to do this over the lifetime of CTAO.

cta CTA Construction Project Page 15 of 21 CTA-STD-OS0O-000000-0001 | Issue 1 | Rev. a
Q./ Software Programming Standards

6. Version Numbering and Releases

6 Version Numbering and Releases

CTA software packages shall have a consistent version numbers assigned to them. The following rules
shall be followed:

« Version numbers shall follow the semantic versioning standards’, where versions have three inte-
ger parts: MAJOR.MINOR.PATCH.

1. MAJOR version number, which is incremented when there are incompatible API or function-
ality changes;

2. MINOR version number, which is incremented when functionality is added in a backward-
compatible manner;

3. PATCH number, which is incremented when there is a backward-compatible bug fix applied.

» For non-release versions, the version string shall contain more information such that the exact
commit can be identified in the revision control system. For example: mypackage-1.0.dev728, or
mypackage-1.0.1-post7+gitlfecb48 (the number of commits posterior to the version 1.0.1 tag,
plus an optional git hash).

+ Released versions shall be tagged in the revision control system, with stable releases as branches
with at least the MAJOR and MINOR version numbers in the branch name, so that older versions
can continue to be maintained via patches without interfering with the development of newer ver-
sions.

« It is recommended that for each software release, a unique identifier (e.g. a DOI) is generated to
make the software release reproducible. Further instructions will be added in a future version of
this document.

Semantic versioning is described in detail at http//semver.org.

cta CTA Construction Project Page 16 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

http//semver.org

7. Licensing

7 Licensing

All CTA software shall include a standard license under which it is released. At the time of writing, the
definition of the standard license for CTA software is in progress. The license will be described in a
dedicated SW license policy document [4], and a summary added here in a subsequent version of this
document.

cta CTA Construction Project Page 17 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

References

References

[1] CTAO. Glossary. Available in Jama: jama.cta-observatory.org

[2] Martin R.C. (2009). Clean Code: A Handbook of Agile Software Craftsmanship. Robert C. Martin Series. Prentice Hall

[8] CTAO Computing. Software Quality Assurance Plan. in preparation

[4] —. CTA Software Licensing Policy. in preparation

[5] Hamill P. (2004). Unit Test Frameworks: Tools for High-Quality Software Development. O’Reilly Series. O’Reilly Media, Inc.

cta CTA Construction Project Page 18 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

jama.cta-observatory.org

References

cta CTA Construction Project Page 19 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

Glossary Glossary

Glossary

Unit Test Automated tests written and run by software developers to ensure that a sec-
tion of an application (known as the "unit’) meets its design and behaves as
intended (see e.g. [5]).

Work-package The term Work-Package is used to refer to the work required for the develop-
ment of each Product, for example the MST work-package. Products are to
be delivered to the CTA Observatory. To its participants a work-package is a
project in its own right with interfaces to CTA and other work-packages and
products. CTA-GLOS-474.

cta CTA Construction Project Page 20 of 21 CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a
L_/ Software Programming Standards

https://jama.cta-observatory.org/perspective.req#/items/2998?projectId=6

Acronyms

Acronyms

ACS ALMA Common Software
ALMA Atacama Large Millimeter Array
API Application Programming Interface
CDR Critical Design Review
Cl Continuous Integration
CTA Cherenkov Telescope Array
CTAO Cherenkov Telescope Array Observatory
FPGA Field Programmable Gate Array
GUI Graphical User Interface
IDE Integrated Development Environment
IEC International Electrotechnical Commission
ISO International Organization for Standardization
PC Project Committee
PLC Programmable Logic Controller
PLD Programmable Logic Device
PO Project Office
RHEL Linux Red Hat Enterprise
CTA Construction Project P: 21 of 21
L_/Cta Softwa?gsPrrl:;rlgrr;mrigjgecStandards aoeste

CTA-STD-OSO-000000-0001 | Issue 1 | Rev. a

	Table of Contents
	Introduction
	Purpose
	Scope

	Computing Environments
	Languages
	Code
	Code Style
	Code Design
	Code Documentation and Comments
	Functionality and Quality Tests

	Development Environments
	Compilers, Interpreters, and Runtime Environments
	External Libraries and Dependencies

	Version Numbering and Releases
	Licensing
	References
	Glossary
	Acronyms

		2020-01-23T13:48:26+0100
	KOSACK Karl

		2020-01-23T13:54:17+0100
	Stefan Schlenstedt

