
ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 1 of 31

Construction Project

ACADA – Array Element Logging ICD

Prepared by 2022-12-12
I. Oya, ACADA WP Coordinator Date

Prepared by 2022-12-12
A. Costa, ACADA-MON Coordinator Date

Approved by
N. Whyborn, Lead Systems Engineer Date

I. Oya, ACADA WP Coordinator Date

Released by
W. Wild, Project Manager Date

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 2 of 31

Change Log

Issue Revision Date Section/Page
affected

Reason/ Remarks /
Initiation Documents

1 a 2021-06-02 All New document.

1 b 2022-12-12 Pages 10-13 CTA-CRE-SEI-000000-0005

List of Contributors

Name Organization Contribution
Igor Oya CTA PO The document and current

version of the interface
Alessandro Costa INAF Logging Data Model; Revi-

sion and OPC UA configu-
ration

Kevin Munari INAF ACS Logging API
Chiara Montanari CTA PO Interface overall process

management
Matthieu Heller & LST
team

LST Feedback on the document

Gianluca Giavitto SST Feedback on the document

List of ICD actors

Actor Role Agreed date and signature

I. Oya ACADA Coordinator

D. Mazin LST

U. Schwanke MST Struct

P. Sizun NectarCam

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 3 of 31

M. Barcelo FlashCam

G. Pareschi SST

M. Gaug Calibration Coordi-
nator

Table of Contents

Table of Contents .. 3

List of Acronyms ... 5

1 Scope ... 5

2 Applicable and Reference Documents ... 6

2.1 Applicable Documents .. 6

2.2 Reference Documents .. 6

3 Interface Requirement specification .. 7

3.1 Overview ... 7

3.2 Assumptions .. 7
3.2.1 Constraints .. 7
3.2.2 Functional Allocation .. 7
3.2.3 Extension of the interface ... 7
3.2.4 Data Transfer... 8
3.2.5 Security and Integrity .. 9

3.3 Interface specification.. 9
3.3.1 Transactions .. 10
3.3.2 Logging Data Model and Format .. 14
3.3.3 Logging Message Standards ... 15
3.3.4 Logging Configuration Settings .. 16

4 Appendix I: Level B and C requirements applicable to this interface 17

5 Appendix II: Logging Data Model to Software Infrastructure API mapping. 18

5.1 ACS C++ logging API [RD4] ... 18
5.1.1 ACE Logging .. 18
5.1.2 Submitting Log Entries ... 19
5.1.3 Specifying an Audience, Array and/or Antenna for a log................................... 21

5.2 ACS Java logging API [RD4] ... 22
5.2.1 JSDK Java Logging API ... 22
5.2.2 ACS Java Logging .. 23
5.2.3 Obtaining a Logger ... 23

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 4 of 31

5.2.4 log Method Use ... 24
5.2.5 Specifying an Audience, Array and/or Antenna for a log................................... 24
5.2.6 Java Log Levels .. 27
5.2.7 ACS Formatters .. 27

5.3 ACS Python logging API [RD4] ... 28
5.3.1 ACS Python Logging .. 28
5.3.2 Short Logging Example .. 28
5.3.3 Specifying an Audience, Array and/or Antenna for a log................................... 29

5.4 Mapping of logging model to the OPC UA: ... 29

5.5 Mapping of logging model to low-level logs .. 30

6 Appendix III: Logging guidelines .. 30

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 5 of 31

List of Acronyms

ACADA Array Control and Data Acquisition
ACE Adaptive Communication Environmen (Not to be confused with

the other usage in CTA of the ACE term for Array Comon Ele-
ments).

ACS Alma Common Software
API Application Programming Interface
CDB Configuration Database
CTA Cherenkov Telescope Array
DPPS Data Processing and Preservation System
HMI Human-Machine Interface
ICD Interface Control Document
TOSS Technical Operations Support System

1 Scope
This document specifies the requirements of interface describing the logging operations of
the Array Control and Data Acquisition (ACADA) System on any CTA Array Element.

Interface management is a process to assist in controlling product development when efforts
are divided amongst different parties (e.g. agencies, contractors, geographically dispersed
technical teams).

This ICD describes the Logging data exchange of the interface between the Array Control
and Data Acquisition (ACADA) System (the target system) and a software application con-
tained in a generic CTA Array Element (the source system). The purpose of the ICD is to
define the design of the interface(s) ensuring compatibility among involved interface ends
by specifying form, fit, and function.

The ICD is managed by the CTAO Interface Manager (or their delegates) and represents an
agreement between the relevant actors. The actors in this ICD are shown at the beginning of
this document.

The ICD is used:

1. to document the interface definition,
2. to control the evolution of the interface,
3. to document the design solutions to be adhered to, for a particular interface,
4. as one of the means to ensure that the supplier design (and subsequent implementa-

tion) are consistent with the interface requirements,
5. as one of the means to ensure that the designs (and subsequent implementation) of

the participating interface ends are compatible.

This Interface Control Document (ICD) documents and tracks the necessary information
required to effectively define the interface between an Array Element and ACADA for the
software logging information flow from the former to the latter, as well as any rules for

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 6 of 31

communicating with them in order to give the development team guidance on the
architecture of the system to be developed.
The purpose of this ICD is to clearly communicate all possible inputs and outputs from the
system for all potential actions whether they are internal to the system or transparent to
system users.
Its intended audience is the Systems Engineering personnel, ACADA and Array Element
development teams, and stakeholders interested in the interfacing of these systems.

2 Applicable and Reference Documents

2.1 Applicable Documents
• AD1: Common On-site Requirements in Jama
• AD2: Requirement Specification for Array Control and Data Acquisition System.

Doc. No. CTA-SPE-COM-303000-0001, Issue 2, Rev. h, 2020-04-29
• AD3: Requirement Specification for Logging and Monitoring System. Doc. No.

CTA-SPE-COM-303000-0009, Issue 1, Rev. h, 20-07-2020

2.2 Reference Documents
• RD1: Top-level Data Model, Doc. No. CTA-SPE-OSO-000000-0001, Issue 1, Rev.

b, 2020-04-30.
• RD2: ACS Logging and Archiving. KGBSPE01/04. Revision: 1.36. 30-07-2007
• RD3: OPC UA Logging Infrastructure: OPC 10000-4: OPC Unified Architecture:

https://reference.opcfoundation.org/v104/Core/docs/Part4/
• RD4: ACS Logging and Archiving Manual. https://confluence.alma.cl/dis-

play/ICTACS/Logging+and+archiving+Manual

https://reference.opcfoundation.org/v104/Core/docs/Part4/6.5.1/
https://reference.opcfoundation.org/v104/Core/docs/Part4/
https://confluence.alma.cl/display/ICTACS/Logging+and+archiving+Manual
https://confluence.alma.cl/display/ICTACS/Logging+and+archiving+Manual

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 7 of 31

3 Interface Requirement specification

3.1 Overview
CTA Array Elements (Telescopes, FRAMs, LIDARS) are composed of hardware and
application software elements. Software components generate software logs that record
events taking place in the execution the program in order to provide a recorded trail that can
be used to understand the activity of the system and to diagnose (usually “post mortem”)
problems. They are essential to understand the activities of complex systems, particularly in
the case of automatized applications with little user interaction.
The software components inside the Array Elements, as well as ACADA, generate logs
through their functioning, and that are archived for the usage of the software maintenance
crew. ACADA provides an infrastructure for the short-term archival of those software logs.
Long term preservation and management of logs is done elsewhere (DPPS and/or TOSS,
TBD).

This ICD specifies the interface requirements the ACADA and any Array Element
System must meet.
This interface is a software interface, and thus it describes:

• the concept of operations for the interface,

• defines the message structure and protocols that govern the interchange of data,

• and identifies the communication paths along which the project team expects data
to flow.

3.2 Assumptions
Any software log that is required to be stored by the CTA central services (ACADA, DPPS,
TOSS) is transmitted via this interface.
The array Element Software components have access to the On-site Data Centre and have
permission to write files in the area reserved to storage logs.

3.2.1 Constraints
No constraint was identified.

3.2.2 Functional Allocation
This interface implements the following functions:

• Gather and store logging data from the Array Elements for further handling within
ACADA and other CTAO computing systems.

3.2.3 Extension of the interface
We do not foresee any need to extend this interface.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 8 of 31

3.2.4 Data Transfer
ACADA provides a standardized infrastructure for software logging data sources within the
array element control systems. This ensures the required modularity, flexibility, and
performance since logging is in general a 24/7 activity that shall occur any time the
corresponding software process is running.
The logging information is transferred from the data source components to ACADA in three
ways:

• Alma Common Software (ACS): ACS components use the standard ACS logging
mechanism to insert logs as described in [RD2]. ACADA has a mechanism to gather
these logs, filter them and store them.

• OPC UA: OPC UA servers use the OPC UA logging infrastructure [RD3]. Logs are
stored in ACADA by placing log entries in files which are stored in a folder structure
managed by ACADA

• Low-level software logs: Low-level software processes, which are not using ACS or
OPC UA, store logs in the same way as OPC UA logs.

Irrespective of the logging mechanism used, the volume of the logs produced by the software
components are to be configured properly in order to avoid generating excessive logging
information (see ACADA-AE-LOG-I-015) during regular operations, but also reconfigured
to provide enough information during debugging campaigns. This is achieved by means of
using filtering based on logging levels.

Figure 1 illustrates how ACADA and an Array Element would implement the logging data
handling process. For illustration purposes, the Array Element in this example has all kind
of software components supported by this interface.
It is worth mentioning that logs produced by ACS and OPC UA servers and transferred via
the standard logging mechanism can be displayed to the Operator via the ACADA HMI.
Low-level logs can only be inspected by accessing directly into the logging archive and
cannot be accessed from the ACADA HMI.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 9 of 31

Figure 1: Diagram illustrating the logging data flow from an Array Element to ACADA,
illustrating the different logical elements and protocols described in this ICD. This Array
Element is an academic example that illustrates all possible variations of software elements
produces of logs: i) A physical device 1 includes an OPC UA-based firmware such as a PLC;
ii) Another Physical Device using a low-level software process that is not OPC UA nor ACS
based; iii) An OPC UA server deployed in a Telescope or Camera Server, iv) An ACS com-
ponent deployed in a Telescope or Camera Server, and v) a “custom” software process
firmware that is not OPC UA nor ACS based.

3.2.5 Security and Integrity
These aspects are not addressed in this document yet.

3.3 Interface specification
This section specifies all elements of the ACADA to Array Element Logging interface.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 10 of 31

3.3.1 Transactions
ACADA-AE-LOG-I-010. Log interfacing. Array Elements shall interface ACADA to
record software logs.

ACADA-AE-LOG-I-015. Maximum Logging Throughput. An array element shall not
produce more than 1 MB/s logging data volume at any given time, averaged over a time of
a second.

Notes:

• This is the volume of data as produced, i.e., does not consider any kind of compres-
sion or later filtering in ACADA.

• It comprises all logs produced by all applications belonging to an Array Element. In
the case of a Telescope, it is all logs produced by the applications associated to the
Telescope and the Structure. Such a limit per array element allows to be compliant
with C-ACADA-LOG-015 when considering all array elements and ACADA inter-
nal logs.

ACADA-AE-LOG-I-020. ACS Logging. Array Elements shall use the standard ACS log-
ger API [RD2] corresponding to the used programming language for inserting ACS logs
into the ACADA system.

Notes:

• ACS supports C++, Java and Python programming languages. See Appendix II for
a description of the mapping with the existing ACS Logging API.

• Whenever using ACS components, the only logging mechanism permitted is the
ACS-based logging.

ACADA-AE-LOG-I-030. OPC UA Logging. Array Elements shall write log messages to
file. The logs files are then consumed by the ACADA Centralized Logging System.

Note: See Appendix II for a description supported OPC UA Logging API.

ACADA-AE-LOG-I-040. Low-level Software Logging. Array Elements shall insert low-
level logs by piping log data into files located in the On-site Data Centre.

ACADA-AE-LOG-I-050. Logging File Standards. Log files used for OPC UA and low-
level software logging shall be plain ASCII files UTF-8 encoding with extension “.log”. In
addition, the scheme presented below shall be used, depending on the used application pro-
gramming language.

 C++:

The file name shall follow the naming scheme:

componentInstanceName_<YYYY>-<MM>-<DD>_<HH>-<mm>-<SS>.log

for the currently active log file and for files being generated earlier, where componen-
tInstanceName

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 11 of 31

is the name of the instance of the component creating the logs, <YYYY>-<MM>-<DD>_<HH>-
<mm>-<SS> is the UTC date corresponding to the moment when the file is opened.

Note: This means that the last log of the night will be named, for example (CTAO North):

componentInstanceName_2022-10-10_07-55-23.log

And the others:

componentInstanceName_2022-10-09_08-00-00.log
…
componentInstanceName_2022-10-09_23-08-07.log
…

 Java.

The file name shall follow the naming scheme:

componentInstanceName_<YYYY>-<MM>-<DD>.<num>.log

for the currently active log file and for files being generated earlier, where componen-
tInstanceName is the name of the instance of the component creating the logs, <YYYY>-<MM>-
<DD> is the UTC date corresponding to the moment when the file is opened, and <num> being
integer number starting at 1 for the first log file created during the day and increasing mon-
otonically for additional log files created the same day.

Note: This means that the last log of the night will be named:

componentInstanceName_<YYYY>-<MM>-<DD>.<i+1>.log

And the others:

componentInstanceName_<YYYY>-<MM>-<DD>.1.log
componentInstanceName_<YYYY>-<MM>-<DD>.2.log
componentInstanceName_<YYYY>-<MM>-<DD>.3.log
…
componentInstanceName_<YYYY>-<MM>-<DD>.<i>.log

 Python.

The file name shall follow the naming scheme:

componentInstanceName_<YYYY>-<MM>-<DD>.log ,

for the currently active log file, and:

componentInstanceName_<YYYY>-<MM>-<DD>.<num>.log

for files being generated earlier, where componentInstanceName is the name of the instance of
the component creating the logs, <YYYY>-<MM>-<DD> is the UTC date corresponding to the
moment when the file is opened, and <num> being integer number starting at 1 for the first

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 12 of 31

log file created during the day and increasing monotonically for additional log files created
the same day.

Note: This means that the last log of the night will be named:

componentInstanceName_<YYYY>-<MM>-<DD>.log

And the others:

componentInstanceName_<YYYY>-<MM>-<DD>.1.log
componentInstanceName_<YYYY>-<MM>-<DD>.2.log
componentInstanceName_<YYYY>-<MM>-<DD>.3.log
…

 Any other programming language or logging data source.

The file name shall follow one of the naming schemes described above.

ACADA-AE-LOG-I-056. CTAO North and CTAO South: Logging Rollover. Log
files, and their directories (when applicable), shall be rotated every day at 8:00 AM UTC at
CTAO North, and 1:00 PM UTC at CTAO South.

ACADA-AE-LOG-I-060. Logging File Content. A software logging file shall contain
one line per new log entry. A log entry shall follow exactly this structure:

<sourceTimestamp> <loggingLevel> <file> <line> <routine> <sourceObject> <logAudience> <Message>

ACADA-AE-LOG-I-065. Logging File Timestamps. Log entries shall use UTC
timestamps to specify the instant when the log-file was generated, following the use ISOT
(ISO 8601) time format:

%Y-%m-%dT%H:%M:%S.000 ,

where Y is year, is month, d is day, H is hour, M is minute, S is second.

Note: an example of a valid timestamp is “2021-02-05T12:49:50.250”.

ACADA-AE-LOG-I-066. Logging File Size. A software logging file size shall not exceed
20 MB. Once this file size limit is exceeded, the file shall be rotated.

ACADA-AE-LOG-I-070. Low-level Software Logging File Location. OPC UA and
low-level Log files shall be stored by the Array Element software processes in the follow-
ing folder structure, depending on the used application programming language:

 C++ and Java.

/DATA/R1/<ARRAYELEMENT>/<SUBSYSTEM>/logs/

Where:

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 13 of 31

• <ARRAYELEMENT> is the official name of the array element instance (e.g. LSTN-01)
• <SUBSYSTEM> is the name of the subsystem producing the logs (e.g. camera)

 Python.

/DATA/R1/<ARRAYELEMENT>/<SUBSYSTEM>/logs/<YYYY>/<MM>/<DD>/

Where:

• <ARRAYELEMENT> is the official name of the array element instance (e.g. LSTN-01)
• <SUBSYSTEM> is the name of the subsystem producing the logs (e.g. camera)
• <YYYY>/<MM>/<DD> is the UTC date,

changing every day at 8:00 AM UTC at CTAO North, and 1:00 PM UTC at CTAO South.

 Any other programming language or logging data source.

Log files shall be stored in one of the folder structures described above.

Note:
In the On-Site Data Centre in La Palma ACADA-AE-LOG-I-060 and ACADA-AE-LOG-I-
070 can be realized, for example for LSTN-01(LST1), for Python, as1:
/fefs/onsite/data/R1/LSTN-01/monitoring/camera/logs/2020/09/03/controler1_2020-09-03.1.log

controler1_2020-09-03.2.log

…

Controler1_2020-09-03.34.log

…

controler2_2020-09-03.1.log

And for the FRAM into:

/fefs/onsite/data/R1/FRAM/monitoring/dome/logs/2020/09/03/domecontroller_2020-09-03.1.log

 …

 domecontroller_2020-09-03.16.log

ACADA-AE-LOG-I-075. Offline logging data source. For servers with no access to the
computer cluster, log files shall be compliant with the current document and transferred to
a shared directory once per hour.

1 The component names in the example log files are illustrative and do not correspond to real component
names.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 14 of 31

3.3.2 Logging Data Model and Format
This section specifies the Logging data model and format relevant for this ICD. This data
category is classified as R1/MON in the CTA data model [RD1].

ACADA-AE-LOG-I-080. Log data model. Any log inserted by the Array Elements into
ACADA must respect the data model specified in Figure 2 and Table 1. In case an optional
value is not present, it shall be replaced by the character “-”.

Figure 2: R1/Logging Data Model. Note that recordId is a unique identifier generated by
ACADA after the log is ingested, and therefore not part of this ICD.

Table 1: R1/Logging Data Model Description

Name Type Description
LogEvent

sourceTimestamp String/double UTC timestamp in the format of %Y-%m-%dT
%H:%M:%S.000, where Y is year, is month, d is day, H
is hour, M is minute, S is second. For example: “2021-
02-05T12:49:50.250”. Internally represented as a dou-
ble. (1)

loggingLevel LogEntryType The level of the log entry (see LogEntryType descrip-
tion).

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 15 of 31

file (optional) String The identification of the source file e.g. “/home/va-
grant/ACS/motor/controller.cpp”.

line (optional) String The line number in the source code where the log entry
was submitted.

routine (optional) String name of the subroutine (function) where the log entry
was submitted from, e.g. Activator::Init or just init()."

sourceObject String Name of the process from which the log entry is gener-
ated.

audience LogAudience The audience of this log
message String The message of the log (2)

LogEntryType
TRACE ENUM value Trace logs are generated whenever a function is entered.

And are used to report calls to a function. These are the
lowest level logs, normally using during development to
track bugs, but excluded from final products.

DELOUSE ENUM value The highest level of detail for debugging the system.
DEBUG ENUM value Debug logs are used only while debugging the system.
INFO ENUM value Info log level is used to publish information of interest

during the normal operation of the system.

NOTICE ENUM value Notice logs are useful for logging normal, but signifi-
cant activity of the system, for example startup or shut-
down of individual services. They denote important situ-
ations in the system, but not necessarily error/fault con-
ditions.

WARN ENUM value Warning logs are used to report to conditions that are
not errors but that could lead to errors/problems

ERROR ENUM value Error logs denote error conditions.

CRITICAL ENUM value Critical logs denote an Alarm condition that shall be re-
ported to operators through HMI

ALERT ENUM value Alert logs denote an Alarm condition that shall be re-
ported to operators through HMI. This denotes a prob-
lem more important than Critical

EMERGENCY ENUM value Emergency logs denote an Alarm condition of the high-
est priority

Log Audience
Operator ENUM value Operator of the array, using the HMI
Developer ENUM value The developer or maintainer of the module generating

this log
Sysadmin ENUM value The on-site ICT administrator,
DBA ENUM value DBA is used for logs to database administrators

Notes:
(1) Internally, ACADA will store the timestamps in TAI seconds since 1970-01-01T00:00:00.0.
(2) The upper limit for each “message” text is 100 KByte.

3.3.3 Logging Message Standards
ACADA-AE-LOG-I-090 Log Message Language. Any log message registered in
ACADA by the Array Elements shall be written in English.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 16 of 31

ACADA-AE-LOG-I-100 Meaningful Log Messages. Any log message registered in
ACADA by the Array Elements shall include meaningful information which is relevant for
the log audience.

Note: The logging guidelines presented in the Appendix III provide information for the
personnel responsible of implementing the log messages.

3.3.4 Logging Configuration Settings
ACADA-AE-LOG-I-110 ACS software modules logging configuration. The Array
Configuration System of ACADA shall contains parameter settings of the logging level-
based filtering and storage that is handled via ACS.

ACADA-AE-LOG-I-120 OPC UA software modules logging configuration. The Array
Configuration System of ACADA shall contains parameter settings of the logging level-
based filtering and storage that is handled via OPC UA.

ACADA-AE-LOG-I-130 Low-level software modules logging configuration. Every
software module generating low-level logs shall include a mandatory configuration item in
the configuration file of the low-level software, or alternatively, a standalone configuration
file. Such configuration item or file shall permit any maintainer to change the logging
level filtering without needing to change the source code or recompilation.

Note: For standalone configuration files, the usage of JSON is recommended.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 17 of 31

4 Appendix I: Level B and C requirements applicable to this interface
This interface addresses the following requirements, repeated here from Jama [AD1], the
ACADA Level-B Requirement Specification document [AD2], and the Level-C
Requirement Specification document for the ACADA Monitoring and Logging Systems
[AD3] for convenience:

• B-ONSITE-0830 Logging. The actions of the System must be logged via OES.
Logging levels must be configurable and follow the defined standards.

• B-ACADA-2240 Logging. ACADA shall provide automatic logging of all Errors,
Warnings, Actions and Alarms.

• B-ACADA-2245 Log Preservation. ACADA shall pass all logging information
down to a configurable level to the TOSS for long term preservation and access for
engineering purposes.

• C-ACADA-MON-LOG-010 Logging Collector. LOG shall allow the collection of
the following log entries:

o Any aggregate log produced by SW elements;
o Software logs of the observation scripts.

• C-ACADA-MON-LOG-015 Logging Collector max data rate. The maximum
data rate in input for the Logging Collector shall be:1000 Mbps

• C-ACADA-MON-LOG-050 Logging Prioritization. LOG [ACADA logging
system] shall categorize log entries in term of priority. This shall be performed using
a Log Entry Level attribute.

• C-ACADA-MON-LOG-060 Log Entry Level. LOG [ACADA logging system]
shall categorize log entries in terms of relevance:

o Trace: Trace logs are generated whenever a function is entered. And are used
to report calls to a function.

o Debug: Debug logs are used only while debugging the system.
o Info: Info log level is used to publish information of interest during the

normal operation of the system.
o Notice: Notice logs are useful for logging normal, but significant activity of

the system, for example startup or shutdown of individual services. They
denote important situations in the system, but not necessarily error/fault
conditions.

o Warning: Warning logs are used to report to conditions that are not errors but
that could lead to errors/problems.

o Error: Error logs denote error conditions.
o Critical: Critical logs denote an Alarm condition that shall be reported to

operators through HMI
o Alert: Alert logs denote an Alarm condition that shall be reported to operators

through HMI. This denotes a problem more important than Critical.
o Emergency: Emergency logs denote an Alarm condition of the highest

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 18 of 31

priority

• C-ACADA-MON-LOG-065. LOG data Timestamp. MON shall be able to
associate the timestamp to logging information. The timestamp specifies the exact
time when the information was produced. The time is encoded in ISO 8601 format
with a precision to one millisecond. The time is specified in UTC, with the following
format:

 %Y-%m-%dT%H:%M:%S.000 ,

where Y is year, is month, d is day, H is hour, M is minute, S is second.

5 Appendix II: Logging Data Model to Software Infrastructure API map-
ping.

5.1 ACS C++ logging API [RD4]

5.1.1 Adaptive Communication Environment ACE) Logging
The ACS C++ Logging API for generating, formatting and filtering log entries is based on
the Adaptive Communication Environment (ACE) Logging API and is provided by a col-
lection of operating system wrappers and common design pattern implementations with the
following functionalities:

• A data structure that can hold a log entry (the ACE_Log_Record, defined in
$ACE_ROOT/ace/Log_Record.h). The structure also holds priority, type and the
timestamp of the log entry. Furthermore, ACE logs filename and line number of the
source code where the log entry originates from. It should be noted that priority and
type in ACE cannot be set separately, because type implies priority, and vice-versa.

• A mechanism for submitting log entries. The mechanism is modeled by the

ACE_Log_Msg class ($ACE_ROOT/ace/Log_Msg.h). There is one instance of this
class per thread.

• ACE's logging mechanism is extensible, allowing for custom callbacks to be regis-

tered with an ACE_Log_Msg object. These callbacks (implementations of an
ACE_Log_Msg_Callback abstract class) receive all entries submitted to the logging
mechanism and can process them any way they want. Please note that the callback
must be registered with the ACE_Log_Msg at the beginning of each thread's lifetime.

• ACE defines several macros which the application programmer can use to submit

log entries, such as ACE_ERROR and ACE_DEBUG (defined in
$ACE_ROOT/ace/Log_Msg.h).

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 19 of 31

Figure 3: Architecture of the ACE Logging framework. The figure gives an overview of ACE
Logging framework. The ACE Logging System gets log entries that can be generic or specific
(using ACS logging macros). It submits them to an object implementing
ACE_Log_Msg_Callback that provides the filtering and the caching capabilities of the
framework. The shadowed objects are out of the scope of this document. The ACE's
mechanism is flexible and high-performing and allows the implementation of objects that
are specific to the ACS Logging requirements. Important with respect to the formatting is
the fact that the default logging macros of ACE (ACE_DEBUG, ACE_ERROR, etc.) already
provide the logging system with the file name and the line number attributes. Additionally,
the logging system outputs the runtime context along with all log entry types except for info
log entry which has to be taken care of by requesting it explicitly through LoggingProxy's
LM_RUNTIME_CONTEXT flag. Though these last attributes are optional according to the
XML Schema, their appearance in the log records could be quite helpful.

An instance of the LoggingProxy class is created in Container's Init and destroyed in Con-
tainer's Done method. It is configured from the Container's configuration record.

5.1.2 Submitting Log Entries
As already mentioned, ACE's logging infrastructure is used for submitting log entries. It can
be used at these levels:

• The macro ACS_LOG, or one of specialized macros ACS_TRACE, ACS_DEBUG,
ACS_DEBUG_PARAM, ACS_SHORT_LOG, and ACS_LOG_TIME, defined in
the ACS include file logging.h.

• Using ACE_Log_Msg and LoggingProxy directly.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 20 of 31

5.1.2.1 Submitting the Source Code Information
The following code submits the source code information:

The resulting log entry in XML would look like this (there would be no white-spaces in the
actual output; they are shown below for purposes of legibility only):

5.1.2.2 Submitting the Runtime Context
The configuration methods of the Container take care of setting up the runtime context in-
formation, e.g. the host name, as well as the process and the thread information:

The resulting log entry in XML would look like this:

5.1.2.3 Submitting a Variables’s Value
The following code submits a value of a variable:

The length of a value should not exceed 255 characters, otherwise it is truncated.

5.1.2.4 Overriding the Default Priority
The following code overrides the default priority of a log entry:

ACS_LOG(LM_SOURCE_INFO, // flags
 "main", // routine name
 (LM_INFO, // informational log entry
 "")); // no additional message text

<Info TimeStamp="2000-09-10T21:34:32.132"
 File="test.cpp" Line="131"
 Routine="main"
 Priority='4'></Info>

ACE_Log_Msg::instance()->local_host("host"); // set the host name
LoggingProxy::ProcessName("proc"); // called at process startup
LoggingProxy::ThreadName("thr"); // called at thread startup
ACS_LOG(LM_RUNTIME_CONTEXT,
 0,
 (LM_ERROR,
 "hello"));

<Error TimeStamp="2000-09-10T21:34:31.435"
 Host="host" Thread="thr" Process="proc"
 Priority='7'/>
 Any number 123
</Error>

LoggingProxy::AddData("dMyDouble", "%f", dMyDouble);
ACS_LOG(0, "main", (LM_TRACE, ""));

ACS_LOG(LM_PRIORITY(12), 0,
(LM_TRACE, // Could be anything...
"Message")) // Could be anything...

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 21 of 31

5.1.2.5 Submitting an Arbitrary Message
To submit an arbitrary message, care must be taken not to break XML formatting rules (for
example, < and > should be used with care). If the message contents are not known in ad-
vance and a possibility exists that they would break XML formatting rules, code like this
should be used:

The unpredictable text is placed in an XML CDATA section.

5.1.3 Specifying an Audience, Array and/or Antenna for a log
Note: This section describes what ACS provides as part of its API, but we want to note
here that in CTA, for the time being, we do not use “Array” and “Antenna” identifier for
logs. Nevertheless, the “Antenna” field could be used as a holder for CTA Array Elements
unique identifier)

5.1.3.1 API
The possible audiences are defined in acscommon.idl. To use them, just access the appro-
priate one. For example:

New macros have been defined in loggingMACROS.h:

// This macro is predefined by ACS_
#define LM_CDATA(t) "<!\[CDATA\[" t "\]\]>"
ACE_ERROR((LM_WARNING,
 LM_CDATA("Some < text %s >"),
 szAString))

string a = log_audience::OPERATOR;

#define LOG_FULL(logPriority, logRoutine, logMessage, logAudience, log-
Array, logAntenna)

#define LOG_With_ANTENNA_CONTEXT(logPriority, logRoutine, logMessage,
logArray, logAntenna)

#define LOG_TO_AUDIENCE(logPriority, logRoutine, logMessage, logAudience)

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 22 of 31

5.1.3.2 Example

5.2 ACS Java logging API [RD4]

5.2.1 JSDK Java Logging API
The official Java Logging API (java.util.logging package) provides with a framework for
generating, formatting and filtering log entries:

• An object that can hold a log record (LogRecord). Its methods allow getting the level
of priority, type and the timestamp as well as the filename, the process, the thread
and the context of the source code where the log entry originates from.

• An object that is used to log messages for a specific system or application component

(Logger).

• A mechanism for taking log entries and exporting them modeled by a Handler class
(ConsoleHandler, FileHandler). There is one instance of the subclasses of this class
per container. For more details, read about the Component-Container model in "Java
Component Tutorial". Both loggers and the handlers are organized in a hierarchical
namespace so that children may inherit some properties from their parents.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <maciSimpleClient.h>

int main(int argc, char *argv[]) {

maci::SimpleClient client;

if (client.init(argc,argv) == 0) {
 return -1;
} else {
 // Log into the manager before doing anything
 client.login();
}

ACS_SHORT_LOG((LM_WARNING,"ACS_SHORT_LOG"));

LOG_FULL(LM_WARNING,"main","LOG_FULL",log_audience::OPERATOR,"array0

1","Antenna01");

LOG_WITH_ANTENNA_CONTEXT(LM_WARNING,"main","LOG_WITH_ANTENNA_CONTEXT

","array01","Antenna01");

LOG_TO_AUDIENCE(LM_WARNING,"main","LOG_TO_AUDIENCE",log_audience::OP

ERATOR);

client.logout();

return 0;

}

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 23 of 31

• An object that provides support for formatting a LogRecord (Formatter). The for-
matter takes a LogRecord and converts it to a string.

• An object that defines a set of standard logging levels that can be used to control

logging output (Level). It can be applied to a log record, a logger and a handler.
Specifying the lowest acceptable level acts for implementing the filtering function-
ality.

5.2.2 ACS Java Logging
The ACS Java Logging API is based on the official JSDK Java Logging and it has been
integrated with the implementation of the CORBA Telecom Logging Service and the rest of
the ACS.

Figure 4: Architecture of the ACS Java Logging framework. The Logger object gets log
entries that it submits to a handler that provides the formatting and the caching capabilities
of the framework. Filtering is done both at the logger and at the handle.

5.2.3 Obtaining a Logger
There are several ways of obtaining a Logger object. The recommended ones are:

• For an application:

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 24 of 31

• For a component:

5.2.4 log Method Use
Logging can be done in two ways: using log for logging log records or the level-specific
method for logging messages (finest, finer, info, warning, severe, all, off).

In the above example, a logger that belongs to the namespace of the container –
alma.acs.container – is instantiated. Because of the logger's hierarchical structure, this
logger is a child of the logger with a namespace alma.acs. In case the properties file does
not specify the level for the log records to be logged with alma.acs.container, the level
of alma.acs would be considered, if specified. Otherwise, the default global logging level
would be considered.

5.2.5 Specifying an Audience, Array and/or Antenna for a log
Note: This section describes what ACS provides as part of its API, but we want to note
here that in CTA, for the time being, we do not use “Array” and “Antenna” identifier for
logs. Nevertheless, the “Antenna” field could be used as a holder for CTA Array Elements
unique identifier).

5.2.5.1 API
• The possible audiences are defined in acscommon.idl. To use them, import the appro-

priate one. For example:

• Two new methods of the alma.acs.logging.AcsLogger:

import java.util.logging.Logger;

import alma.acs.logging.ClientLogManager;

Logger m_logger = ClientLogManager.getAcsLogManager().getLoggerForAppli-
cation(clientName, true); // the last parameters enables or disables re-
mote logging

import java.util.logging.Logger;

import alma.acs.container.ContainerServices;

Logger m_logger = getContainerServices().getLogger();

m_logger.log(LogRecord.INFO, "log INFO record using the generic method
log”);

m_logger.info("log INFO records using the specific method info”);

import alma.log_audience.OPERATOR;

String a = OPERATOR.value;

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 25 of 31

• New class alma.acs.logging.domainspecific.AntennaContextLogger:

• New class alma.acs.logging.domainspecific.ArrayContextLogger:

public void logToAudience(Level level, String msg, String audience);

public void logToAudience(Level level, String msg, Throwable thr, String
audience);

public AntennaContextLogger(AcsLogger logger); //constructor

public void log(Level level, String msg, String audience, String array,
String antenna);

public void log(Level level, String msg, Throwable thr, String audience,
String array, String antenna);

public void log(Level level, String msg, String array, String antenna);

public void log(Level level, String msg, Throwable thr, String array,
String antenna);

public ArrayContextLogger(AcsLogger logger); //constructor

public void log(Level level, String msg, String audience, String array);

public void log(Level level, String msg, String array);

public void log(Level level, String msg, Throwable thr, String audience,
String array);

public void log(Level level, String msg, Throwable thr, String array);

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 26 of 31

5.2.5.2 Example
package alma.acs.logging;

import java.util.logging.Level;

import alma.acs.component.client.ComponentClient;
import alma.acs.logging.domainspecific.AntennaContextLogger;
import alma.log_audience.OPERATOR;

public class TestAudArr extends ComponentClient {

 public TestAudArr(String managerLoc, String clientName) throws Exception {
 super(null, managerLoc, clientName);
 }

 public static void main(String args[]) {

 String managerLoc = System.getProperty("ACS.manager");

 if (managerLoc == null) {

 System.out.println("Java property 'ACS.manager' must be set to the
corbaloc of the ACS manager!");

 System.exit(-1);
 }

 String clientName = "TestAudArr”;
 TestAudArr client = null;

 try {
 client = new TestAudArr(managerLoc, clientName);

 AcsLogger m_logger = (AcsLogger)client.getContainerServices().getLog-
ger();

 AntennaContextLogger logger = new AntennaContextLogger(m_logger);

 m_logger.log(Level.WARNING, "Normal Log”);

 m_logger.logToAudience(Level.WARNING, "Log with audience",
OPERATOR.value);

 m_logger.logToAudience(Level.WARNING, "Log exception with audience",
new Exception("My dummy exception"), OPERATOR.value);

 logger.log(Level.WARNING, "Log with audience, array and antenna",
OPERATOR.value, "Array01", "Antenna01”);

 logger.log(Level.WARNING, "Log with array and antenna", "Array01",
"Antenna01");

 logger.log(Level.WARNING, "Log exception with audience, array and an-
tenna", new Exception("My dummy exception"), OPERATOR.value, "Array01", "Antenna01");

 logger.log(Level.WARNING, "Log exception with array and antenna", new
Exception("My dummy exception"), "Array01", "Antenna01”);

 Thread.sleep(1000);

 } catch(Exception e) {
 System.out.println("Error creating test client”);
 }
 try {
 client.tearDown();
 } catch(Exception e) {
 System.out.println("Error destroying test client”);
 }
 }

}

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 27 of 31

5.2.6 Java Log Levels
The Java log levels have been remapped to comply with the ACS log levels from the XML
schema. The mapping is done in the alma.acs.logging.AcsLogLevel class where the ACS
levels, like the JAVA API levels, are specified by ordered integers. The OFF level, which is
not mentioned in the XML schema, is included for dealing with bad levels as well as for
blocking logging:

Table 2: Java log levels.

ACS Level (ACE Le-
vel)

ACS Logging Prio-
rity Java API Level Java Logging Prio-

rity

TRACE 12 FINEST
(FINER) 3400

DELOUSE 2 FINER 400

DEBUG 3 FINE (CONFIG) 700

INFO 4 INFO 800

NOTICE 5 INFO 801

WARN 6 WARNING 900

ERROR 8 WARNING 901

CRITICAL 9 WARNING 902

ALERT 10 WARNING 903

EMERGENCY 11 SEVERE 1000

TRACE 2 ALL Integer.MIN_VALUE

OFF - OFF Inte-
ger.MAX_VALUE

5.2.7 ACS Formatters
The formatters involved are named according to the ACS Logging Level. The
alma.acs.logging.AcsXMLFormatter is a formatter object that produces a valid XML
string out of a log message according to the XML schema for ACS.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 28 of 31

Figure 5: Class Diagram of ACS Formatters. The AcsLogFormatter object defines methods
for getting the properties needed for formatting a string into an XML string. The
AcsXMLFormatter calls any of the customized formatter.

5.3 ACS Python logging API [RD4]

5.3.1 ACS Python Logging
The ACS Python Logging API provides an interface used to send logs to the (CORBA) ACS
logging service object which lives within the acsLogSvc process. acsLogSvc then publishes
the logs to an event channel which distributes them to all interested consumers such as the
jlog GUI. The standard ACS Python logger is available via a getLogger() method of
Acspy.Servants.ContainerServices or by using the getLogger('logger name') function found
in the Acspy.Common.Log module. The logger object returned is derived from the native
Python logging class, logging.logger. Additionally, the ACS logger provides a set of logXyz
methods where Xyz is the priority of the log (e.g., logInfo). This set of methods is provided
for backward incompatibility reasons and also to automatically extract the name of the call-
ing function, line where the log method was invoked, etc. For more information of function-
ality provided by the ACS Python logging API, please see the pydoc for the Acspy.Com-
mon.Log module.

5.3.2 Short Logging Example
The following consists of a trivial Python logging example. The acspyexmpl CVS module is
literally loaded with logging usage(s) and it is highly recommend reading it or the pydoc for
Acspy.Common.Log for far more comprehensive examples:

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 29 of 31

5.3.3 Specifying an Audience, Array and/or Antenna for a log
Note: This section describes what ACS provides as part of its API, but we want to note
here that in CTA, for the time being, we do not use “Array” and “Antenna” identifier for
logs. Nevertheless, the “Antenna” field could be used as a holder for CTA Array Elements
unique identifier).

5.3.3.1 API
New method in Acspy.Common.Log.Logger:

5.3.3.2 Example

5.4 Mapping of logging model to the OPC UA:
See Section 3.3.1.

from Acspy.Common.Log import getLogger

logger = getLogger("my little logger")
logger.logTrace("publishes logs of low priority")
logger.logInfo("publishes logs of normal priority with extra stuff:" +
str(7))

import logging

logger.log(logging.ERROR, "and can even publish logs using native Python
logging semantics")

logNotSoTypeSafe(self, priority, msg, audience=None, array=None, an-
tenna=None);

from Acspy.Common.Log import getLogger
import ACSLog
from Acspy.Clients.SimpleClient import PySimpleClient
import logging
from log_audience import OPERATOR
from log_audience import NO_AUDIENCE

simpleClient = PySimpleClient()

logger = getLogger("TestAudience")

logger.log(logging.WARNING, "Normal log")

logger.logNotSoTypeSafe(ACSLog.ACS_LOG_WARNING, "Log with audience, array
and antenna", OPERATOR, "Array01", "Antenna01")

logger.logNotSoTypeSafe(ACSLog.ACS_LOG_WARNING, "Log with audience",
OPERATOR)

logger.logNotSoTypeSafe(ACSLog.ACS_LOG_WARNING, "Log with array and an-
tenna", NO_AUDIENCE, "Array01", "Antenna01")

simpleClient.disconnect()

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 30 of 31

5.5 Mapping of logging model to low-level logs
See Section 3.3.1.

6 Appendix III: Logging guidelines
This appendix describes the guidelines to be used when creating the software logs handled
by this ICD.

• Longs should be meaningful by themselves:
o Always anticipate that there are emergency situations where the only thing

to understand what occurred is the log file.
o Reading the log itself should provide enough context to the reader.
o If possible, add remediation information in the log message.
o Don’t add a log message that depends on a previous message’s content.

(The reason is that those previous messages might not appear if they are
logged in a different category or level. Or worse, they can appear in a differ-
ent place (or way before or also after, in a multi-threaded or asynchronous
context.)

• Don’t Log Too Much or Too Little.
o Too much logging and it will be hard to get any value from it. Too little log-

ging and we risk to not be able to troubleshoot problems.
o Unfortunately, there is no magic rule when coding to know what to log – it

is important the developers to understand the right balance of the logging
information.

• Every message in code should be an individual. If one searched for an error mes-
sage (via e.g. grep) it should not appear everywhere, or even twice.

• No terminal colours. Creates a mess and some people cannot see colours.
• Think of Your Audience: adapt your language to the allocated target audience.

Understand that, for example, the product developer knows the internals of the pro-
gram, thus their log messages can be much more complex than if the log message is
to be addressed to the operator.

• Logging Purposes.
o Troubleshooting: Most extended usage of logging, allows recording post-

mortem details of an occurred incident.
o Auditing: Capture significant events that matter to the management, legal, or

security people. These are statements that describe usually what users of the
system are doing (like who signed-in, who edited that, etc…).

o Profiling: as logs are timestamped to the millisecond level, it can become a
good tool to profile sections of a program, for instance by logging the start
and end of an operation for later profiling usage.

o Statistics: if you log each time a certain event happens (like a certain kind of
error or event) you can compute interesting statistics about the running pro-
gram. This will allow to eventually hook to the alarm system to detect too
many errors in a row.

• Don’t Log Sensitive Information. Make sure you never log:
o Passwords and other credentials.
o Session identifiers Information the user has opted out of.
o Authorization tokens.
o Personal Identifiable Information, such as personal names.

ACADA – Array Element Logging ICD

 Doc. No. CTA-ICD-SEI-000000-0005
Issue 1, Rev.: b, 2022-12-12

Page 31 of 31

	Table of Contents
	List of Acronyms
	1 Scope
	2 Applicable and Reference Documents
	2.1 Applicable Documents
	2.2 Reference Documents

	3 Interface Requirement specification
	3.1 Overview
	3.2 Assumptions
	3.2.1 Constraints
	3.2.2 Functional Allocation
	3.2.3 Extension of the interface
	3.2.4 Data Transfer
	3.2.5 Security and Integrity

	3.3 Interface specification
	3.3.1 Transactions
	3.3.2 Logging Data Model and Format
	3.3.3 Logging Message Standards
	3.3.4 Logging Configuration Settings

	4 Appendix I: Level B and C requirements applicable to this interface
	5 Appendix II: Logging Data Model to Software Infrastructure API mapping.
	5.1 ACS C++ logging API [RD4]
	5.1.1 Adaptive Communication Environment ACE) Logging
	5.1.2 Submitting Log Entries
	5.1.2.1 Submitting the Source Code Information
	5.1.2.2 Submitting the Runtime Context
	5.1.2.3 Submitting a Variables’s Value
	5.1.2.4 Overriding the Default Priority
	5.1.2.5 Submitting an Arbitrary Message

	5.1.3 Specifying an Audience, Array and/or Antenna for a log
	5.1.3.1 API
	5.1.3.2 Example

	5.2 ACS Java logging API [RD4]
	5.2.1 JSDK Java Logging API
	5.2.2 ACS Java Logging
	5.2.3 Obtaining a Logger
	5.2.4 log Method Use
	5.2.5 Specifying an Audience, Array and/or Antenna for a log
	5.2.5.1 API
	5.2.5.2 Example

	5.2.6 Java Log Levels
	5.2.7 ACS Formatters

	5.3 ACS Python logging API [RD4]
	5.3.1 ACS Python Logging
	5.3.2 Short Logging Example
	5.3.3 Specifying an Audience, Array and/or Antenna for a log
	5.3.3.1 API
	5.3.3.2 Example

	5.4 Mapping of logging model to the OPC UA:
	5.5 Mapping of logging model to low-level logs

	6 Appendix III: Logging guidelines

		2022-12-22T14:37:12+0100
	Igor Oya Vallejo

		2023-01-09T11:19:34+0100
	Alessandro Costa

		2022-12-22T14:31:44+0100
	Nick Whyborn

		2022-12-22T14:37:28+0100
	Igor Oya Vallejo

		2023-01-10T16:52:01+0100
	Wolfgang Wild

