

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 1/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI-Horn Legacy

Prepared by: Name: Vito Conforti Signature: Date: Jan 14, 2021

Verified by: Name: J. Schwarz Signature Date:

Approved by: Name: G. Tosti Signature: Date:

Released by: Name: S. Scuderi Signature Date:

14/01/2021

05/02/2021

Joseph Schwarz
Feb. 1, 2021

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 2/70

All information contained in this document is property of INAF. All rights reserved.

Main Authors: Vito Conforti, F. Gianotti, F. Lucarelli

Contributor Authors: G. Tosti, G. Schwarz, A. Bulgarelli, S. Lombardi

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 3/70

All information contained in this document is property of INAF. All rights reserved.

TABLE OF CONTENTS

Introduction 6

Purpose 7

Scope 7

Content 7

Definitions and Conventions 7

Abbreviations and acronyms 8

Applicable and reference documents 9

Applicable Documents 10

Reference Documents 10

ASTRI-Horn Context 13

The Mini Array Software System 14

ASTRI-Horn Software Development 15

4.1 Software Version Control 16

4.2 How to obtain a Git account 16

4.3 Development rules 17

4.3.1 Interface Control Document 17

4.3.2 Code generation 17

4.4 How to implement an ACS component 17

4.4.1 MODROOT 18

4.4.2 INTROOT 19

4.4.3 The Makefile 20

4.5 preliminary running and tests 20

5.1 Test Bed environment 23

5.2 Continuous Integration with Jenkins 23

5.3 ASTRI Software release 26

6.1 Observation control machines 27

6.2 Telescope and auxiliary system management machines 27

6.3 Data handling machines 28

6.4 The ACS container configuration 29

6.5 user and machine lists 29

6.6 Authorization and Authentication 31

6.7 ICT configuration for test bed and real environment 31

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 4/70

All information contained in this document is property of INAF. All rights reserved.

7.1 Machine setup 32

7.2 Download and compile 34

8 Development and integration of the ASTRI reduction and scientific data analysis
software (A-SciSoft) 37

9 Lessons learned 40

10 Appendix 41

Appendix A - Makefile 41

Appendix B - ACS Command Center Configuration File 57

Appendix C - ASTRI-Horn CDB tree 60

Appendix D - System configuration 63

D-1 Scientific Linux 6.x at SLN 63

D-1-1 System installation, startup and automatic configuration 63

D-1-4 Scripts Code 64

D-2 CentOS 7.x for the Test Bed 67

D-2-1 System installation, startup and automatic configuration 67

D-2-2 Script Code 68

E script to run containers 69

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 5/70

All information contained in this document is property of INAF. All rights reserved.

INDEX OF FIGURES & TABLES

Ɣ Figure 1 ASTRI MASS functional decomposition
Ɣ Figure 2 ASTRI integration levels
Ɣ Figure 3 Integration Manager Workflow
Ɣ Figure 4 Continuous Integration with Jenkins
Ɣ Figure 5 ASTRI-Horn Jenkins display
Ɣ Figure 6 observation control UML deployment diagram
Ɣ Figure 7 telescope and auxiliary UML deployment diagram
Ɣ Figure 8 data handling UML deployment diagram
Ɣ Figure 9 ASTRI test bed

DOCUMENT HISTORY

Issue Date Modification
1.0 14/01/2021 First release

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 6/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 7/70

All information contained in this document is property of INAF. All rights reserved.

1 IntrodXction
The ASTRI project (Astrofisica con Specchi a Tecnologia Replicante Italiana) was started
b\ INAF (IstitXto Na]ionale di Astrofisica) in 2010 Zithin the conte[t of the ³Progetti
Bandiera´ (³Flagship programs´) of the Italian Ministr\ for Researcher and UniYersity
(MUR, formerly MIUR). In the first phase of this project the ASTRI-Horn Cherenkov
telescope was developed as an end-to-end prototype for the next generation of Imaging
Atmospheric Cherenkov Telescopes (IACTs) of the Cherenkov Telescope Array (CTA)
international observatory. In particular the ASTRI-Horn 4-m telescope was designed
following the requirements for the CTA Small Sized Telescopes that will be dedicated to
observe in the high energy part, above some TeV, of the energy range covered by CTA.

The ASTRI-Horn prototype was inaugurated in September 2014 and is located on mount
Etna (Sicily) at 1730 m of altitude, at the Astronomical Station of Serra La Nave (SLN)
of the Catania Astrophysical Observatory.

It is mainly a technological demonstrator. Indeed, it uses a dual mirror Schwarszchild-
Couder telescope optical configuration, based on highly aspherical optics and it
represents a novelty in the world of Very High Energy astrophysics. This particular design
allowed the use of smaller camera pixels based on Silicon PhotoMultipliers (SiPMs)
technology to substitute the larger Photomultiplier Tubes (PMTs), in use on current
IACTs.

The second phase of the ASTRI project consists in the construction, deployment and
operation of an array of 9 wide-field Cherenkov telescopes (The ASTRI Mini-Array),
based on an upgraded version of the ASTRI-Horn prototype, at the Observatorio del
Teide in Tenerife (Spain).

1.1 Purpose

This document describes the ASTRI ± Horn software integration that will be taken as
baseline for the ASTRI Mini-Array. This is part of the legacy of the ASTRI-Horn project
used to develop the Final Architecture of the ASTRI Mini-Array.

1.2 Scope

The scope of this document is to provide the needed reference information to the
designer and developer of the ASTRI Mini-Array software. Readers should not assume
that procedures and tools described here will necessarily be used or mandated for the
Mini-Array. While some, e.g., ACS and OPCUA, will certainly be carried over to the Mini-
Array, others will be reviewed and may be revised or replaced taking account of
experience gained with ASTRI-Horn and new developments in software engineering
technology.

1.3 Content

1.4 Definitions and Conventions

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 8/70

All information contained in this document is property of INAF. All rights reserved.

1.4.1 Abbreviations and acronyms

ƕ AMC - Active Mirror Control

ƕ ASTRI - Astrofisica a Tecnologia Replicante Italiana

ƕ CTA - Cherenkov Telescope Array

ƕ DAQ -Data Acquisition system

ƕ DHS - Data Handling System

ƕ GUI - Graphical User Interface

ƕ ICD - Interface Control Documents

ƕ ICS - Instrument Control System

ƕ INAF - Istituto Nazionale di Astrofisica

ƕ MASS - Mini-Array Software System

ƕ OCS - Observatory Control System

ƕ PDE - Photon Detection Efficiency

ƕ PDM - Photon Detection Module

ƕ PMC - Pointing Monitoring Camera

ƕ SiPM - Silicon Photomultiplier

ƕ SLN - Serra La Nave

ƕ SQM - Sky Quality Meter

ƕ SST - Small Size Telescope

ƕ TCS - Telescope Control System

ƕ TCU - Technical Control Unit

ƕ TDR - Technical Design Report

ƕ THCU - Technical Health Control Unit

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 9/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 10/70

All information contained in this document is property of INAF. All rights reserved.

2 Applicable and reference docXments
2.1 Applicable Documents

[AD1] ASTRI-INAF-DES-2100-001 ASTRI Mini-Array Top level software architecture

[AD2] ASTRI-INAF-PLA-2100-002 ASTRI Mini-Array Software Development Plan

[AD3] ASTRI-INAF-PRO-2100-001 ASTRI Mini-Array Software Integration Test
Model

2.2 Reference Documents

[RD1] PROCEDURES OF SOFTWARE INTEGRATION TEST AND RELEASE FOR
ASTRI SST-2M PROTOTYPE PROPOSED FOR THE CHERENKOV TELESCOPE
ARRAY - 16th Int. Conf. on Accelerator and Large Experimental Control Systems
ICALEPCS2017, Barcelona, Spain JACoW Publishing ISBN: 978-3-95450-193-9
doi:10.18429/
[RD2] Software Integration for the ASTRI SST-2M Prototype proposed for the Cherenkov
Telescope Array - Proceedings of the Astronomical Data Analysis Software and Systems
XXVI vol. 521
[RD3] Software use cases to elicit the software requirements analysis within the ASTRI
project, Conforti et al. Proceedings of the SPIE Astronomical Telescopes +
Instrumentation, 2016, Edinburgh,United Kingdom.
[RD4] Software design and code generation for the engineering graphical user interface
of the ASTRI SST-2M prototype for the Cherenkov Telescope Array - C. Tanci et al -
Proceedings Volume 9913, Software and Cyberinfrastructure for Astronomy IV; 99133X
(2016) https://doi.org/10.1117/12.2232005
[RD5] The High-Level Interface Definitions in the ASTRI/CTA Mini Array Software
System (MASS) - V. Confort et al - Astronomical Data Analysis Software and Systems:
XXIV, ASP Conference Series, Vol. 495.
[RD6] Information and Communication Technology (ICT) Infrastructure for the ASTRI
SST-2M telescope prototype for the Cherenkov Telescope Array - F. Gianotti et al - Proc.
SPIE 9913, Software and Cyberinfrastructure for Astronomy IV, 99132C (8 August
2016); doi: 10.1117/12.2230150.
[RD7] ASTRI Virtual Test Bed: from Prototype to Mini Array - F. Gianotti et al -
Proceedings of the Astronomical Data Analysis Software and Systems XXX
[RD8] ³ASTRI data reduction software in the framework of the Cherenkov Telescope
Array´ - S. Lombardi, L. A. Antonelli, C. Bigongiari, et al. - Proceedings of SPIE 2018,
Vol. 10707-29.
[RD9] ´CheUenkoY TeleVcoSe AUUa\ DaWa ManagemenW´ - G. Lamanna, et al. (for the CTA
Consortium) - Proc. 34th ICRC (2015) - arXiv:1509.01012.
[RD10] ´DaWa model iVVXeV in Whe CheUenkoY TeleVcoSe AUUa\ SUojecW´ - Contreras, J. L.,
et al. (for the CTA Consortium) - Proc. 34th ICRC (2015) - arXiv:1508.07584.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 11/70

All information contained in this document is property of INAF. All rights reserved.

[RD11] ´ASTRI SST-2M prototype and mini-array data reconstruction and scientific
anal\ViV VofWZaUe in Whe fUameZoUk of Whe CheUenkoY TeleVcoSe AUUa\´ - Lombardi, S.,
L. A. Antonelli, D. Bastieri, et al. - Proc. SPIE 9913 (2016), 991315.
[RD12] ´ASTRI SST-2M data reduction and reconstruction software on low-power and
SaUallel aUchiWecWXUeV´ - Mastropietro, M., et al. - Proc. SPIE 9913 (2016), 99133V.
[RD13] ´DefiniWion of Whe Fle[ible Image TUanVSoUW S\VWem (FITS), YeUVion 3.0´ - Pence,
W. D., Chiappetti, L., Page, C. G., Shaw, R. A. and Stobie, E., Astronomy and
Astrophysics 524, A42 (2010).
[RD14] http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html
[RD15] http://heasarc.gsfc.nasa.gov/fitsio/ccfits/
[RD16] https://cmake.org/
[RD17] https://github.com/google/googletest/
[RD18] www.doxygen.org/
[RD19] http://www.sphinx-doc.org/
[RD20] https://docs.conda.io/en/latest/
[RD21] http://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_intro.html
[RD22] http://heasarc.nasa.gov/lheasoft/
[RD23] Igel, C., Heidrich-Meisner, V., Glasmachers, T., ´Shark,´ JoXrnal of Machine
Learning Research 9, 993-996 (2008).
[RD24] Bea]le\, D. M., ´SWIG: An eas\ to Xse tool for integrating scripting langXages
Zith C and C++,´ Proc. 4th USENIX Tcl/Tk Workshop 4 (1996).
[RD25] https://www.mongodb.org
[RD26] https://opcfoundation.org/about/opc-technologies/opc-ua/
[RD27] https://confluence.alma.cl/display/ICTACS/ICT+ALMA+Common+Software
[RD28] https://www.jenkins.io/
[RD29] https://ieeexplore.ieee.org/abstract/document/5764064

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 12/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 13/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 14/70

All information contained in this document is property of INAF. All rights reserved.

3 ASTRI-Horn Conte[t
The ASTRI-Horn Telescope (formerly known as the ASTRI SST-2M Prototype) is being
verified and tested with the engineering software released in beta version [RD1, RD2].
Since we are adopting an iterative incremental approach for the development of the
software, it is growing and changing rapidly. The software integration team goal is to
integrate more software components, each of which functions properly in standalone
tests, into the larger ASTRI software system that fulfills the system requirements. An
additional goal is to support the maintenance activities such as debugging and
implementation of new functionality. The drivers for the software integration activities are
the ASTRI software requirements, both in text and use case form [RD3], the software
architecture [RD4] and the component interfaces [RD5].

3.1 The Mini Array Software System

The main MASS components, which implement the required scenarios, are depicted in
Fig. 1. Telescope hardware is locally controlled, with each assembly responsible for its
own safety. The assemblies are grouped in a control hierarchy, in which each parent
relays the commands to its children. At the highest level the Operator Control System
(OCS) provides all the common services necessary for observations and the Data
Handling System (DHS) manages the data flow from the control system to the data
repositories.

Figure 1 - ASTRI MASS functional decomposition

The architecture for the ASTRI mini-array is detailed in [AD1].

Figure STYLEREF 1 \s 3 SEQ Figure *
ARABIC \s 1 1 - MASS Information Flow

diagram.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 15/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 16/70

All information contained in this document is property of INAF. All rights reserved.

4 ASTRI-Horn SoftZare DeYelopment

- 4.1 Software Version Control

In order to perform the software versioning control, we selected Git as a repository to
control both the component versions and the build versions.

We consider a software component version, a specific release of a software which
inclXdes all its dependencies, setXp instrXctions and ³getting started´ instrXctions. The
software component shall be executed either standalone to support the unit tests, or as
a part of a system to support the business operations.

We consider a build version, a specific release of a set of components which satisfy the
requirements. The build includes the dependencies for each component and the setup
instruction to install the software components as a whole.

Git repo allows the developer to control the software prototypes through his or her
Sandbox.

In order to apply the logic above we organized our repo (gitbox) tree as follow:

Ɣ ASTRI/Sandbox/USERNAME/*
Ɣ ASTRI/MODULE/*
Ɣ ASTRI/ICD/*
Ɣ ASTRI/CommonTools/*

where

- USERNAME is the Git account of a single developer who could control the
version for each Git project. Usually USERNAME is the developer surname.

- MODULE is one of the ASTRI modules which composes the MASS software. The
foreseen modules are:

- AUX (auxiliary)
- CAM (camera)
- DAQ (data acquisition)
- DHS (data handling system)
- ICT (hardware monitoring and control)
- OCS (observations control)
- PMC (pointing camera)
- TCS (telescope control).

- ICD contains the Interface Control Documents for each component, which was in
charge of the management of the hardware devices, either in .xls or .xml format;

- CommonTools contains software that can be used by all the ASTRI developers
(e.g. code generator, device simulator, ...).

- 4.2 How to obtain a Git account

For the ASTRI-Horn prototype we used gitbox detailed here:
http://redmine.iasfbo.inaf.it/projects/sw_management_tools/wiki/IASFBO_Git-Tutorial

For the ASTRI mini-array activities we configured the gitlab installation of INAF here:
https://www.ict.inaf.it/gitlab/groups/astri

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 17/70

All information contained in this document is property of INAF. All rights reserved.

The authentication in gitlab is managed through the LDAP credentials provided by INAF.
Once you run the first log in then a new account is created in gitlab and then you can
ask the authorization to the ASTRI project just sending an e-mail to vito.conforti@inaf.it

Detailed gitlab documentation is available here: https://docs.gitlab.com/

A dedicated wiki page provide more information concerning the gitlab to support ASTRI
project: https://redmine.iasfbo.inaf.it/projects/software/wiki/Git_Repository

-

- 4.3 Development rules

The integration activities require specific development rules to support the integration
processes.

1. The software components shall be tested (unit) and documented (with user
manual and setup instructions). The first step shall be always to produce a simulator in
order to not lock the other developer jobs;

2. We request our developers to use the virtual machine for the development which
provides a standardized environment, very similar to what will be used in operations.
OPC-UA [RD26] is used throughout to integrate the software with the hardware devices,
and ACS [RD27] to integrate higher-level software components with each other.

3. A Git repository is used for the releasing of software. We require our developers
to use the repository for the intermediate versions during the software development.

4. It is mandatory to perform the lowest-level integration (for components which
interface hardware devices) and middle-level integration before any release. In case of
success the developer shall tag the version.

5. It is mandatory to perform the top-level integration (exploiting the test bed) before
any major release of the software, and before the deployment in the production
environment. The software on-site can be updated and a new version of the Software
Release Document (SreID) shall be published.

6. Continuous integration, consisting of a full build and execution of all unit tests, is
done via Jenkins.

- 4.3.1 Interface Control Document

In order to support the test activities we provide a hardware simulator which produces
dummy data and states according to its ICD (Interface Control Document).

- 4.3.2 Code generation

Since some components may be automatically generated, we suggest paying particular
attention to extend and commit these components. Otherwise the risk is that some
updates could be overwritten by the code re-generation.

- 4.4 How to implement an ACS component

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 18/70

All information contained in this document is property of INAF. All rights reserved.

To ease the work of the developers, a predefined set of standard directories can be
created using a simple command:

$ getTemplate

This is an interactive utility which provides templates for many different purposes. In this
case Ze are interested in choosing the option ³director\StrXctXre´. Then a choice among
different types of directory structures is proposed. Basically you will be interested in using
two types:

- MODROOT (that can be WS type only, LCU type only or both WS and LCU according
to the type of code you have to develop). Here you will put the software source code as
you develop it;

- INTROOT (integration area where the developed code gets installed after successful
compilation and b\ rXnning ³make install´). YoX can access this area throXgh the
environment variable $INTROOT. This environment variable can be found in the
.bash_profile.acs. It is up to the user to define it in a proper way.

Another important area is called ACSROOT, which is fixed when ACS is installed and is
not modifiable by the developer. The directory structure is basically the same as for the
INTROOT but the meaning of the area is different: the ACSROOT is the repository for
the ACS software. There, all the ACS libraries, tools and the acsMakefile (a makefile
based on GNU make) are installed and available for every user, who can access that
area through the environment variable $ACSROOT. Only the responsible persons for
the installation of the ACS software release can create and populate an ACSROOT. The
ownership and permission of the files into the ACSROOT should not allow other users
different from the installation user to modify that area.

MODROOT and INTROOT are instead totally handled by each developer, who can
create and populate them or delete them.

There are also man pages which explain how those areas are organized (just be careful
that your ACS installation did build them; this is optional and not all machines installed
with ACS have the man pages available). You can access them running:

man acsDirectoryStructure

If you do not want to go through the interface provided by getTemplate, you can also
create in one command the directory structure using the commands (example in the case
of INTROOT):

getTemplateForDirectory INTROOT $INTROOT

where $INTROOT is the path to your INTROOT directory.

- 4.4.1 MODROOT

The usual location for a MODROOT is somewhere in the user home directory. Each
MODROOT corresponds to a software module containing a set of standard
subdirectories created with getTemplate. A software module is a piece of software able

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 19/70

All information contained in this document is property of INAF. All rights reserved.

to perform functions and having an interface available to an external user to access the
functions provided. Technically a module is a way to organize functions in homogeneous
groups. The interface hides the implementation and system dependencies from the user.
Managerially the module is the basic unit for planning, project control and configuration
control. There is no rule to define how big a module shall be. Common sense and
programming experience should be enough to identify what can be gathered and treated
as a unique item. Examples of modules are: a driver for a specific board (the driver itself,
install utility, configuration data files, etc.), the logging system of ACS (libraries, utilities,
etc.), the configuration database (the server in Java and C++ libraries to communicate
with the server). Once a MODROOT has been created with getTemplate you will work
under the different directories of the MODROOT, keeping or removing what is not
needed. Be aware that some directories are mandatory:

- src is the directory where you will be putting the sources you are working on

- include is the directory that contains any needed header (³.h´) files

- lib is where the libraries produced by the build are stored, as well as any
necessary third-party libraries that are not provided by ACS

- bin is where any executables produced by the build are stored

- idl is for the Interface Definition language files

- man is for the man pages

- object is where the dependencies files for the build are stored (when running
³make all´)

- doc is for the documentation generated with doxygen (see chapter 15)

- test is for the test source code

Note that the Makefile system requires the user to put *generated* source code under
src as well (e.g., code generated for the ICD and TMCDB). This pollutes the src directory
and leads to generated code getting committed to git, which is a bad idea. The Makefile
procedure ought to be enhanced to look in an additional srcgen directory (or something
similar) for source code. At the time of writing, this overdue enhancement has not been
addressed by the ALMA ACS development group.

- 4.4.2 INTROOT

The usual location for the INTROOT is /introot/<username>, but any other area
accessible to the users on a machine will be OK. This path should be passed to the
program ³getTemplate´, after choosing the options ³director\StrXctXre´ ->
³createINTROOTarea´.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 20/70

All information contained in this document is property of INAF. All rights reserved.

Then the variable $INTROOT must be made available to the user environment. As we
saw in chapter 5, you should edit the file $HOME/.acs/.bash_profile.acs and set the
INTROOT accordingly, e.g.:

export INTROOT=$HOME/introot/

and log out and in again.

- 4.4.3 The Makefile

To ensure homogeneity in the development of the software for the ALMA project, GNU
make must be used at every site or consortium. This is by default the case on any system
installed with the ACS release according to the ALMA standards. A wide set of make
definitions haYe been coded and made aYailable throXgh a file called ³acsMakefile´.
Analogously, every developer should provide the src and test directories of his/her
software module with a Makefile where he/she will indicate the actions to be taken when
rXnning ³make all man install´. This Makefile has to be created starting from the Xtilit\
³getTemplate´ and choosing ³code´ and then ³Makefile_for_WS´ (if the code to be
produced has to run on a UNIX workstation. Note that, if the module has been created
with the directory structure from getTemplate, it will already contain the right Makefile.
The module Makefile must include the acsMakefile. (The template contains the adequate
instruction). To see the structure and use of the Makefile, please refer to the man pages:

$ man Makefile

The makefile for package option produces a high-level Makefile, intended to be used to
bXild a set of modXles Zith one command. Using this Makefile caXses ³make bXild´ to
iterate oYer all the modXles specified, rXnning either ³make clean all install´ or ³make
bXild´ for each one. In the case of sXbs\stems containing more than one modXle, it ma\
be preferable to use one such high-level Makefile for each subsystem. This will enable
a developer who wants to build only his own subsystem to do so as a single command.

Comments inside the generated template explain how to configure the Makefile to build
the specific modules desired.

- 4.5 preliminary running and tests

During the coding activities the developer can run and test the software.

The developer configures an ACS CDB for test purposes creating the files in
myACSComponent/test/CDB and sets the environment variable $ACS_CDB that shall
refer to the CDB folder just prepared.

The developer then installs the software in the introot folder through the command:

make install

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 21/70

All information contained in this document is property of INAF. All rights reserved.

Finally the developer can experiment interactively with the software thanks to the GUI
provided by ACS. (This is not the basis for automatic tests, which typically use JUnit,
cppunit or pyunit.) The command is:

acscommandcenter

Once started the GUI, the developer can run ACS and the containers. ACS provides a
default container for each programming language admitted:

- frodoContainer for java components;
- bilboContainer for C++ components;
- argoContainer for python components

5 ASTRI-Horn Integration Model
In information technology, the systems integration is the process of linking together
different computing systems and software applications physically or functionally, to act
as a coordinated whole. The ASTRI Collaboration in compliance with the CTA
consortium selected the OPC-UA (OPC - Unified Architecture) to connect the software
to the hardware devices, and ACS (ALMA Common Software) to interface the software
components to each other within the application layer as depicted below:

Figure 2 ASTRI integration levels

We plan three levels of integration:

- Lowest level: the goal is to test the interfaces between each hardware device and
its related software. The software shall be able to monitor and control all the hardware
device properties.

- Middle level: the goal is to test the interface between a software component and
its neighbours, both the incoming and outgoing calls.

- Top level: the goal is to test the system as a whole by executing the scenarios
detailed in the use cases.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 22/70

All information contained in this document is property of INAF. All rights reserved.

We support the integration activities at every level, providing:

- Git repo for the version control;

- Jenkins to perform the continuous integration tests;

- Test report and release templates to document the software tests and the
releases;

We are using Git for the software versioning at all levels (firmware, prototyping software,
production software, third-party software). We use the Git tag system to set a component
version or in general a software version for a specific physical machine. Jenkins exploits
the setup and unit tests to execute the continuous integration.

We provide the virtual machine to support the middle level integration. The virtual
machines provide an environment similar to the real system in order to facilitate local
tests, the test bed provides a virtual environment in which all the production machines
are simulated.

We provide to the developers, who produce code through high level programming, a
virtual machine with an environment similar to the real machine on site. We require the
developers to test effectively their code before committing it to the repository in order to
minimize potential errors during integration with other software components. We
implemented the integration-manager workflow on Git repo (see Fig. below)

Figure 3 Integration Manager Workflow

in order to control the software versions and to support the developer who executes the
local test of his component which interfaces other components. During the coding period
the developer commits to the local (private) development branch. Once the software is
ready for the release, the developer pushes the code to the remote (public) development
branch. The integration manager clones the public development branches and performs
the integration tests. In case of failure the developers have to fix any bug, in order to
eventually close with success the integrations tests. Finally the integration manager
merges the development branch on the master branch and pushes the code into the
remote master branch (blessed repository). The developers pull the latest software
version from the blessed repository into their development branch to continue the coding
for the next release. The interface between the OPC-UA server installed on the hardware
device and the OPC-UA client that is part of the ACS component is defined through an
ICD (Interface Control Document) created with a predefined format. The ASTRI software
has to provide the management of any hardware devices. In order to reduce the coding

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 23/70

All information contained in this document is property of INAF. All rights reserved.

time, we implemented code generator software (python script) that takes as input the
ICD (either in .xls or .xml format) and provides the ACS component which includes the
OPC-UA client. We also implemented the OPC-UA server simulator that gets information
about the device to simulate from a configuration file provided by the code generator. In
this way the developer can easily execute the local software test without any real
hardware. We also require the developer to implement the test for the business logic
layer. The test consists of one or more programs that can be repeated by any user.

The [AD3] provides detail concerning the integration approved test model for the ASTRI
Mini-Array project.

- 5.1 Test Bed environment

The test bed is a set of virtual machines installed at INAF-OAS Bologna which reproduce
the same real machines on site. The virtual machines in the test bed have the same
configuration (networking, users, operating system, dns, ...) of real machines in order to
allow the tester to perform effective tests. The goal of these tests is to verify the software
setup, and the interactions among software components. All the machines in the test bed
as well as those ones on-site have the ASTRI Git read-only user in order to allow the
integrator to download or update the software.

- 5.2 Continuous Integration with Jenkins

Continuous integration systems are a vital part of any Agile team because they help
enforce the ideals of Agile development [RD29]. Jenkins [RD28], a continuous build tool,
enables teams to focus on their work by automating the build, artefact management, and
deployment processes. The Jenkins core functionality and flexibility allow it to fit in a
variety of environments and can help streamline the development process for all
stakeholders involved.

Martin FoZler proYides the continXoXs integration definition: ³ContinXoXs Integration is a
software development practice where members of a team integrate their work frequently,
usually each person integrates at least daily - leading to multiple integrations per day.
Each integration is verified by an automated build (including test) to detect integration
errors as qXickl\ as possible´.
At a regular frequency (ideally at every commit), the system is:

- Integrated
- Built (the code is compiled into an executable or package)
- Tested (Automated test suites are run)
- Archived (versioned and stored so it can be distributed as it is, if desired)
- Deployed (Loaded onto a system where developers can interact with it).

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 24/70

All information contained in this document is property of INAF. All rights reserved.

Figure 4 Continuous Integration with Jenkins

The best practices for the continuous integration are:

- Single Source Repository;
- Automate Build and Test;
- Everyone Commits Every Day;
- Keep the Build Fast;
- Everyone can see what's happening.

And the benefits are:

- Immediate bug detection;
- No integration step in the life cycle;
- A deployable system at any given point;
- Record of evolution of the project.

One of the basic principles of Continuous Integration is that a build should be verifiable.
You have to be able to objectively determine whether a particular build is ready to
proceed to the next stage of the build process, and the most convenient way to do this
is to use automated tests. Without proper automated testing, you find yourself having to
retain many build artifacts and test them by hand, which is hardly in the spirit of
Continuous Integration.

The test suite has to be run by the developer before committing the software with the
new code to the repository. Furthermore ACS includes TAT (Tool for Automated Tests)
that is a framework which can run a test suite with only one command and reports the
result in a simple and clear way: the word PASSED or FAILED is printed to the standard
output. Although the ASTRI developers do not push new software with very high
frequency, we keep continuously monitored, through a Jenkins server, the software
status in order to detect very quickly any breaking build in our development work. We

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 25/70

All information contained in this document is property of INAF. All rights reserved.

implemented two Jenkins jobs for each software component: the first compiles the last
version on the development branch, the latter runs the unit test suite through TAT.

Figure 5 ASTRI-Horn Jenkins display

The figure above depicts the Jenkins page for the ASTRI project. The first column is the
status of the build (a broken build is marked with a red bullet); in the second column there
is the ³Zeather report´ shoZing aggregated statXs of recent bXilds; then follows the name
of the job. The integration manager and the developers can display in any moment the
details about the continuous integration through a jenkins server installed at the
Astronomical Observatory of Catania.

We plan an integration test before any software release. Before we require that the
component version candidates for the release locally passed the tests. We execute the
preliminary tests on the ASTRI test bed. The test bed is a set of virtual machines which
reproduce the same real machines on site.

We created an installer project for the management of the software components which
exploit the ACS services. In particular it provides the functionalities to download the
software either from development or master branch. In this project we configure also the
parameters to connect the hardware devices, the parameters for the monitoring and the
details for the deployment. We install this project and the ACS software components on
a dedicated machine where the ACS manager is responsible for the software
deployment. All the other machines are configured to link properly the node where the
manager runs. Once the test succeeds on the test bed, the next step is to perform the

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 26/70

All information contained in this document is property of INAF. All rights reserved.

integration test onsite. During this test we verify the setup procedures on the real servers,
the interfaces among the software components, and here we also verify the connections
between the software and the firmware installed in the hardware devices. This integration
test is part of the ASTRI project AIV (Assembly Integration and Verification) plan.

- 5.3 ASTRI Software release

We officially release the software version when all tests are successfully completed on
site. The integration manager updates the installer in order to download the specific
tested version of the software component. Then the integration manager tags and
pushes on the master branch all the updated software on the repository. We apply a
specific pattern to the tag of the release that is V.X.Y.Z, where X denotes a major release
not always compatible with the previous version, Y means a minor release which
includes new capabilities and it is compatible with the previous version, and Z is used to
indicate the bug fixes. These activities are reported in the release document which
provides an overview of that version, the details and capabilities for every component
which constitute the version. In this document we also refer to the test reports and user
manuals. In addition we published a web based application built on redmine software, to
collect the issues, to require new features or to report any bug. Redmine also provides
issue-tracking functionality.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 27/70

All information contained in this document is property of INAF. All rights reserved.

6 ASTRI-Horn Deplo\ment Model
In this section we detail for each component the physical machine (generally the node)
where it should be executed. You can see the kind of node and the kind of component
through the stereotype (within the brackets <<>>) specified at the top of the element
before its name.

This model is valid both for the SLN site and the test bed.

- 6.1 Observation control machines

Figure 6 observation control UML deployment diagram

- 6.2 Telescope and auxiliary system management machines

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 28/70

All information contained in this document is property of INAF. All rights reserved.

Figure 7 telescope and auxiliary UML deployment diagram

- 6.3 Data handling machines

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 29/70

All information contained in this document is property of INAF. All rights reserved.

Figure 8 data handling UML deployment diagram

- 6.4 The ACS container configuration

In this section you can find detailed descriptions of the container (where it shall run and
what components it will manage.

- 6.5 user and machine lists

The table below details the list of machines and users either in the test bed or on-site.

machine O.S. User description

slntcs SL 6.7 astrisw telescope control
software

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 30/70

All information contained in this document is property of INAF. All rights reserved.

snltcs1 Win7 tcs1user pc used for the
development and
maintenance
activities of the
telescope control
firmware.

slntcs2 Win7 tcs2user pc used for the
weather station
software. In
addition it is used
for the development
and maintenance
activities of the
telescope control
firmware.

slnics SL 6.7 astrisw camera control
software

slnaux SL 6.7 astrisw auxiliary control
software

astrisln SL 6.7 astrisw border server and
ACS file server

slndaq SL 6.7 astrisw data acquisition
software

slntcmcdb SL 6.7 astrisw monitoring
database

slncluster1 SL 6.7 pipeuser science software

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 31/70

All information contained in this document is property of INAF. All rights reserved.

slncluster2 SL 6.7 pipeuser science software

slnstorage SL 6.7 storageuser archive

slnomc SL 6.7 astrisw human machine
interface

slnpmc.astrivpn.com Fedora TBD virtual machine for
the pointing model
camera

slnacsfs None none initially devoted as
ACS file spare but
eventually spare

slnacsss SL 6.7 astrisw ACS manager

-

At time of writing this document the operating system version in Scientific Linux 6.7.
Nevertheless we foresee upgrading to the Scientific Linux or CentOS 7.6.

In order to access to this environment you need to jump to the border server:

- astrisln.iasfbo.inaf.it (for the test bed);
- astrisln.oact.inaf.it (for the SLN site).

- 6.6 Authorization and Authentication

Any user who needs to access the machines either in the test bed or on site shall
authenticate through the LDAP system.

The ASTRI ICT manager releases access credentials to the people who request it.
Currently encrypted software which contains all the needed passwords is available.

The user astrisw is a special read-only user with a common $HOME in all the machines
which use ACS in order to share the same software version and configuration on the
ACS framework.

- 6.7 ICT configuration for test bed and real environment

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 32/70

All information contained in this document is property of INAF. All rights reserved.

The RD6 and RD7 provide details concerning the test bed and real environment of the
information and communication technology system.

The test bed provides a test environment aimed at performing the integration tests during
the development and maintenance phase in order to perform the preliminary software
verification before the integration tests with hardware devices on-site. The test bed is
based on Oracle VM (OVM), which is a professional bare metal virtualization system.
OVM is fast and reliable and free for small installations and it can ensure high availability.
OVM allows a single control console to easily manage multiple hypervisor servers and
dozens of Virtual Machines. The ASTRI test bed (see figure below) reproduces the SLN
prototype environment like Network Services: Firewall, NAT, VPN, DNS, LDAP, Frontier
Server, ISCSI/NFS Storage. Telescope Control and Monitor Servers like: Telemetry Data
Base, Instrument Control Telescope control, Telescope Operation Gui, Auxiliary
management. Data Acquisition, Archiving and Analysis Servers for: Digital Acquisition,
Data reduction system and Storage systems In the test bed we have to reproduce: the
same network as the ASTRI prototype and the same SLN servers, but virtualized, with
the same IP addresses and server names as those of SLN. The benefit is to run the
same software configuration in both test and production environments. In VTB all the
physical devices are replaced by HW simulators so as to be able to integrate and test
the Software in the VTB in a complete and meaningful way.

Figure 9 ASTRI test bed

7 ASTRI-Horn setXp and rXnning

- 7.1 Machine setup

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 33/70

All information contained in this document is property of INAF. All rights reserved.

The machines which provide the distributed software on ACS shall be properly
configured.

The installation of ACS is the prerequisite and the starting point for developing any
application for the ONLINE system. Access to the ACS libraries may also be necessary
for building OFFLINE applications. When ACS is installed, a file called .bash_profile.acs,
placed under the path $ACSROOT/config/.acs, is available for the user who performed
the installation. As a user, you should copy the $ACSROOT/config/.acs directory in
his/her home directory and source it from $HOME/.bash_profile .bash_profile.acs to
properly set up the environment. You should set the INTROOT variable before sourcing
.acs/.bash_profile.acs, leaving this latter file unmodified. To source the file, just run the
command:

. $HOME/.acs/.bash_profile.acs

 (Note that the environment variable $ACSROOT can expand in different ways,
depending from how you handled the installation, but the default path is: /alma/ACS-
X.Y/ACSSW, where X is the major number of the ACS release and Y is the minor
number.)

This file .bash_profile.acs is written in bash style and supposes that the user uses bash
as an interactive shell. Then, it is enough to source the file before starting any work and
the developer will have the environment setup with the necessary environment variables.
Note, however, that changing INTROOT after logging in will not perform properly. When
the system $PATH and other environment variables are constructed at login time, the
INTROOT that these variables reference will be the one encountered by the first value
of INTROOT encountered in the login scripts. It is possible, but very tedious to change
these values manually later. To change the INTROOT in use, you need to redefine it in
your .bash_profile and then log out and login again.

A special machine master runs the ACS Manager which coordinates all the machines in
the system. Each machine must have set the following environment variable, which
provides reference to the manager:
 export MANAGER_REFERENCE=corbaloc:slnacsss:3000/Manager

In addition all the machines, in order to execute the ACS containers and its components
need the ACS daemons running (we usually run the daemon at the boot time of each
machine).

The command to run the container services and ACS daemons are:

su -l csuser -c acscontainerdaemon &

su -l acsmgr -c acsservicesdaemon &

su -l acsmgr -c acscontainerdaemon &

The Annex D details the instructions for configuring the machines properly.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 34/70

All information contained in this document is property of INAF. All rights reserved.

- 7.2 Download and compile

In order to setup the

- Makefile for downloading the modules from repository and build (that is compiled
and installed in the introot defined).

- For the local test environment, each developer can define the introot in local path;

- For the integration test on the test bed it is mandatory to use the integration folder
under /alma/ASTRI_SW on the file server mounted by any other participating machine.

- Test and Operation CDB (either XML or TMCDB);

The ACS software itself is installed on a single server: astrisln. It is mounted by all the
machines which use ACS facilities and host ACS containers. This solution ensures that
all the machines use only one instance of ACS software (the same version). Since ACS
exists mainly to manage distributed objects (services, containers and components) on
many network-connected hosts, a single instance of the ACS manager must keep track
of all such objects in the system to do this task successfully. It is also a benefit for the
ACS maintenance/upgrade activities.

The ACS manager shall be configured properly. Through the ACS command center you
can create the configuration of each container (ip address and port). Then you can export
this configuration in an XML file so that it may be passed as a parameter to the ACS start
command line script.

At time of writing this document the latest stable version of the software on-site is:

gitbox:ASTRI/CONTROL/ASTRI-Control-Setup

The first step is to configure the environment and download the software modules and
we can perform this task through the Makefile. The README file contains all the
information to set the environment variables (see also the file loadEnvironment). The
Makefile provides the target to download and install the software. You can find the
Makefile in appendix A.

The command make download_master pulls the software module which produces the
build in the control directory.

The command make build installs the software in the introot which we defined in
$HOME/introot.

Where the $HOME is that of the user astrisw.

The file ASTRI_DISTRIBUTED_CONFIG_WITHTMCDB contains the configuration to
run the software for test purposes with the acscommandcenter. In particular we defined

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 35/70

All information contained in this document is property of INAF. All rights reserved.

the machines in the system and the containers which run in each machine (see appendix
B).

The configuration of the components/containers is held in the CDB directory tree which
includes XML files. Here you can find the containers and their configurations, and the
component configurations. The directory tree is in Appendix C.

We created the script to run/stop/kill the software (see ASTRI-Control-Setup/bin folder):

 |-astriacsKill

 |-astriacsKillContainers

 |-astriacsStart

 |-astriacsStartContainers

 |-astriacsStop

 |-astriacsStopContainers

 |-kill

the script to start acs is quite simple because we need only to define the machine to host
the acs manager, the path for the log files and the heap size:

#!/bin/bash

ssh -t astrisw@slnacsss.astrivpn.com "date && hostname && source
$ASTRI_ROOT/loadEnvironment && echo $ASTRI_ROOT && cdbChecker &&
HEAP_SIZE=\"-Xmx512m\" && export JAVA_OPTIONS=\"$HEAP_SIZE\" &&
nohup acsStart >
$ACSDATA/logs/slnacsss.astrivpn.com/acsStart_`date "+%F-
%T"`_acstart_log && exit"

The script to run the containers is more interesting, because we run here the daemon to
start each container on the specific machine (Appendix E).

All the scripts above are used directly in the operator GUI in order to be more user
friendly. Finally the user shall only run this command in slnomc,the machine dedicated
to the HMI:

./StartInstalledGUI.sh

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 36/70

All information contained in this document is property of INAF. All rights reserved.

The distributed systems run properly because all the machines know the location of the
acs manager and the software version is the same for all the machines because each
machine mounts the $HOME directory of the user astrisw.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 37/70

All information contained in this document is property of INAF. All rights reserved.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 38/70

All information contained in this document is property of INAF. All rights reserved.

- 8 DeYelopment and integration of the ASTRI redXction and
scientific data anal\sis softZare (A-SciSofW)

The ASTRI data reconstruction and scientific analysis software (henceforth A-SciSoft
[RD8]) is the official software package of the ASTRI Project for the reduction and analysis
of the scientific data acquired by the ASTRI-Horn Telescope. Its design and development
started in 2014 in full compliance with the general CTA data management requirements
[RD9] and data model specifications [RD10] available at that time. The software has
been designed to handle both real and Monte Carlo (MC) simulated data, and to provide
all necessary algorithms and analysis tools for characterizing the scientific performance
of the ASTRI-Horn Prototype. Because the software was also designed with an array
configuration in mind, it will be also used to perform the reduction of data acquired with
the ASTRI Mini-Array.

The main purpose of A-SciSoft is to reconstruct the physical characteristics of
astrophysical gamma rays (and background cosmic rays) from the raw data generated
by the ASTRI-Horn Telescope and the Mini-Array. The software is composed by a set of
independent modules organized in an efficient pipeline that implements all the necessary
algorithms to perform the complete scientific data reduction, from raw data to the final
scientific products.

The overall framework adopted for the development of A-SciSoft follows the general
high-level requirements listed in [RD11], and the main guidelines provided by the CTA
Consortium.

In what follows, the main features of the A-SciSoft software development framework are
presented [RD11].

Ɣ Programming languages: C++11 (International Standard ISO/IEC 14882:2011(E)
± Programming Language C++) and Python. Due to our interest in exploring data
processing on parallel and low-power architecture, we also ported
computationally intensive algorithms to CUDA [RD12]. The Python language has
been used for wrapping software executables and to provide a high-level user
interface.

Ɣ Data format and I/O layer: The FITS format [RD13] has been adopted for all the
data produced by the ASTRI-Horn prototype, from the raw data (converted to
FITS files during data acquisition) up to the final scientific products. Throughout
the whole analysis chain, cfitsio libraries [RD14] are used for FITS read/write and
manipulation. As C++ is the common programming language used in all low-level
modules, we used the C++ wrapped version of cfitsio, called CCfits [RD15].

Ɣ Build system and compilers: The code is built using the gcc compiler under Unix-
like platforms. Since we target multiple architectures, we used CMake [RD16] to
automatically configure the compilation. CMake easily allows the software to be
compiled on heterogeneous systems and can automatically detect the presence
of kernels targeted to accelerators (e.g., CUDA code for NVIDIA GPUs).

Ɣ Software development tools: Version control is made through git, which is
integrated both with the Redmine issue tracker system and the Jenkins
continuous integration system. Jenkins, at each new push on the remote code
repository, automatically performs compilation of the last code version and
execution of the unit tests written using the GoogleTest [RD17] framework. In the

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 39/70

All information contained in this document is property of INAF. All rights reserved.

current environment, cppcheck is used for static code quality inspection (check
for duplicate code, potential bugs, coding standards and so on).

Ɣ Code documentation: Code documentation is written in Doxygen [RD18] for C++
and CUDA code, and Sphinx [RD19] for Python code and software general
description.

Ɣ Deployment and packaging: A-SciSoft will be distributed both as source code and
as binary packages (.tgz, .deb, .rpm, etc.) generated from the source code by the
build system. A Conda package [RD20] has also been built, which includes final
binary executables and libraries for the installation on several target operating
system platforms.

Ɣ Calibration database: A-SciSoft makes use of a calibration database (CALDB)
system based on standard HEASARC tools [RD21] for retrieving basic
instrumental and analysis inputs needed throughout the data reduction, such as
nominal hardware-related quantities, look-up-tables and matrices of instrument
response functions.

Ɣ External Dependencies: A-SciSoft depends essentially on the HEASoft [RD22]
astronomical software package which includes the cfitsio, CCfits, CALDB, and
hoops libraries needed for I/O and parameter system handling. These are the
only external dependencies which can be satisfied installing the HEASoft
software libraries. To perform model training for event reconstruction, the Shark
[RD23] open-source Machine Learning libraries have been used.

Ɣ Python bindings: Python is rapidly becoming the standard for end-user analysis
in astronomy, and nearly all new science analysis tools provided by other
observatories provide at least a python interface. Since it is easy to interface C
and Python code, we provided Python bindings to the library we implemented.
We adopted SWIG (Simple Wrapper Interface Generator) [RD24] to generate
python modules. The C++ library code that we have written can be then easily
called.

Ɣ Event processing and parallelization: Processing for the low-level data reduction
is done by chunks of events. This allows for an easy parallelization on multi-core
systems and GPUs.

Ɣ Logging class: We designed a dedicated logging class called ctalog able to
stream logging and error messages to different targets. Error and log streams
may be redirected differently (by changing a configuration parameter), for
example to:

ż standard streams (stdout and stderr)
ż text file
ż socket (may be used as shared memory, a la MPI (Message Passing

Interface), internet socket, etc.)
ż database (SQL, MongoDB [RD25])

Thanks to its C interface, ctalog can be easily wrapped and used also in Python
modules and pipeline scripts.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 40/70

All information contained in this document is property of INAF. All rights reserved.

- 9 Lessons learned

The methodology implemented for ASTRI-Horn provided a lot of benefits:

- software well tested with different levels (unit, integration, validation on-site with
the hardware);

- hardware platform performance corresponding to the requirements;
- effective software version control;
- user friendly setup and operations;

The improvement points for the future are:

- to implement the continuous integration pipeline which really stress the software
(more unit tests);

- to configure the static code analysis with SonarQube;
- to include the off-site software in this loop;
- to improve the release workflow to ensure that we produce all the deliverables

before the release (test reports and user manuals).

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 41/70

All information contained in this document is property of INAF. All rights reserved.

- 10 Appendi[

- Appendix A - Makefile

This makefile refers the repo:

gitobox:ASTRI/CONTROL/ASTRI-Control-Setup

commit id: bfbbd5b3

#***

ALMA - Atacama Large Millimeter Array

Copyright (c) UNSPECIFIED - FILL IN, 2016

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free
Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 42/70

All information contained in this document is property of INAF. All rights reserved.

"@(#) $Id: Makefile_PACKAGE.template,v 1.12 2010/07/09 12:48:42
alopatin Exp $"

Makefile of

who when what

-------- -------- --

Vito Conforti 2016-12-15 created

ALMA - Atacama Large Millimeter Array

Copyright (c) ESO - European Southern Observatory, 2014

(in the framework of the ALMA collaboration).

All rights reserved.

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later
version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU

Lesser General Public License for more details.

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 43/70

All information contained in this document is property of INAF. All rights reserved.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free
Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

#***

#***

This Makefile follows ACS Standards (see Makefile(5) for more).

#***

REMARKS

None

#---

Modules in the various sub-packages.

The following example is for a subsystem called Voyager One

which is composed of two directories, Alpha and Beta.

Alpha contains the modules alpha1, alpha2 and alpha3

Beta contains the modules beta1, beta2 and beta3

Modify as appropriate to your subsystem

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 44/70

All information contained in this document is property of INAF. All rights reserved.

SUBSYSTEM = "ASTRI Control Setup"

MODULES_ASTRI_CONTROL_MODULES = TCS UaDataSupportExtensions
device ASC SQM AMC TCU THCU Database PmcAcs TMCDB TMCDB_MySQL
WeatherStation astritel OMC/AcceptanceGUI

#MODULES_BETA = beta1 beta2 beta3

MODULES = $(foreach dir, $(MODULES_ASTRI_CONTROL_MODULES),
control/$(dir)) :

 # $(foreach dir, $(MODULES_BETA), Beta/$(dir))

If option KEEP_GOING=on is present in the make command line
gnu_make is NOT interrupted

when the first error is encountered

ifdef KEEP_GOING

 KEEP_GOING="on"

else

 KEEP_GOING="off"

endif

RETURN_CODE=return_code

TMP_RETURN_CODE=tmp_return_code

MAKE_FLAGS = "-k"

PLATFORM := $(shell uname)

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 45/70

All information contained in this document is property of INAF. All rights reserved.

SHELL=/bin/bash

ECHO=echo

ifdef MAKE_VERBOSE

 AT =

 OUTPUT =

else

 AT = @

 OUTPUT = > /dev/null

endif

os = $(shell uname)

osrev = $(shell uname -r)

ifeq ($(os),SunOS)

 realtime=YES

endif

"Failed all" error management

define mng_failed_all

 if [[-a $(TMP_RETURN_CODE)]]; then\

 $(ECHO) "### ==> FAILED all ! " | tee -a build.log |
tee -a $(RETURN_CODE);\\

 rm $(TMP_RETURN_CODE);\

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 46/70

All information contained in this document is property of INAF. All rights reserved.

 if [[$(KEEP_GOING) = "off"]]; then \

 if [[-a $(RETURN_CODE)]]; then \

 rm $(RETURN_CODE);\

 fi;\

 exit 2;\

 fi;\

 fi

endef

"Failed install" error management

define mng_failed_install

 if [[-a $(TMP_RETURN_CODE)]]; then\

 $(ECHO) "### ==> FAILED install ! " | tee -a build.log
| tee -a $(RETURN_CODE);\

 rm $(TMP_RETURN_CODE);\

 if [[$(KEEP_GOING) = "off"]]; then \

 if [[-a $(RETURN_CODE)]]; then \

 rm $(RETURN_CODE);\

 fi;\

 exit 2;\

 fi;\

 fi

endef

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 47/70

All information contained in this document is property of INAF. All rights reserved.

This target just forward any make target to all modules

define canned

 @$(ECHO) "############ Executing '$@' on all $(SUBSYSTEM)
modules #################"

 @for member in $(foreach name, $(MODULES), $(name)) ; do
\

 $(ECHO) "############ $${member}" ;\

 if [! -d $${member}]; then \

 echo "### ==> $${member} MODULE NOT
FOUND! FAILED! " | tee -a build.log;\

 fi;\

 if [-f $${member}/src/Makefile]; then \

 $(MAKE) $(MAKE_FLAGS) -C $${member}/src/ $@ ||
break ;\

 elif [-f $${member}/ws/src/Makefile]; then \

 $(MAKE) $(MAKE_FLAGS) -C $${member}/ws/src/ $@ ||
break ;\

 fi;\

 if ["$(realtime)" == "YES"]; then \

 if [-f $${member}/lcu/src/Makefile]; then \

 $(MAKE) $(MAKE_FLAGS) -C $${member}/lcu/src/ $@
|| break ;\

 fi;\

 fi;\

 done

endef

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 48/70

All information contained in this document is property of INAF. All rights reserved.

clean_log:

 @$(ECHO) "############ Clean Build Log File: build.log
#################"

 @rm -f build.log

 @touch build.log

building all modules

build:

 @$(ECHO) "############ build $(SUBSYSTEM) Software
#################"| tee -a build.log

 @# Deletion of temporary files used to store make return
code

 @if [[-a $(TMP_RETURN_CODE)]]; then \

 rm $(TMP_RETURN_CODE);\

 fi

 @if [[-a $(RETURN_CODE)]]; then \

 rm $(RETURN_CODE);\

 fi

 @for member in $(foreach name, $(MODULES), $(name)) ; do
\

 if [! -d $${member}]; then \

 echo "### ==> $${member} MODULE NOT FOUND!
FAILED! " | tee -a build.log;\

 fi;\

 if [-f $${member}/src/Makefile]; then \

 $(ECHO) "############ $${member} MAIN" | tee
-a build.log;\

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 49/70

All information contained in this document is property of INAF. All rights reserved.

 $(MAKE) $(MAKE_FLAGS) -C $${member}/src/ clean
>> build.log 2>& 1;\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/src/ all >>
build.log 2>& 1 || echo $$? >> $(TMP_RETURN_CODE) ;\

 $(mng_failed_all);\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/src/ install
>> build.log 2>& 1 || echo $$? >> $(TMP_RETURN_CODE) ;\

 $(mng_failed_install);\

 continue ;\

 fi;\

 if [-f $${member}/ws/src/Makefile]; then \

 $(ECHO) "############ $${member} WS" | tee -a
build.log;\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/ws/src/
clean >> build.log 2>& 1;\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/ws/src/ all
>> build.log 2>& 1 || echo $$? >> $(TMP_RETURN_CODE) ;\

 $(mng_failed_all);\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/ws/src/
install >> build.log 2>& 1 || echo $$? >> $(TMP_RETURN_CODE) ;\

 $(mng_failed_install);\

 fi;\

 if ["$(realtime)" == "YES"]; then \

 if [-f $${member}/lcu/src/Makefile]; then \

 $(ECHO) "############ $${member} LCU" | tee
-a build.log;\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/lcu/src/
clean >> build.log 2>& 1;\

 $(MAKE) $(MAKE_FLAGS) -C $${member}/lcu/src/
all >> build.log 2>& 1 || echo $$? >> $(TMP_RETURN_CODE) ;\

 $(mng_failed_all);\

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 50/70

All information contained in this document is property of INAF. All rights reserved.

 $(MAKE) $(MAKE_FLAGS) -C $${member}/lcu/src/
install >> build.log 2>& 1 || echo $$? >> $(TMP_RETURN_CODE) ;\

 $(mng_failed_install);\

 fi;\

 fi;\

 done

 @$(ECHO) "... done"

download_dev:

 rm -rf control

 mkdir control;

 @ $(ECHO) "Extracting from Git the ext lib to support the
execution of characteristic components "; \

 git clone -b dev gitbox:ASTRI/TOOLS/ext_lib control/ext_lib

 cp control/ext_lib/* $(INTROOT)/lib/

 @ $(ECHO) "Extracting from Git the astro tool "; \

 git clone -b dev gitbox:ASTRI/TOOLS/astro control/astro

 cp control/astro/lib/* $(INTROOT)/lib/

 @ $(ECHO) "Extracting from Git PMC "; \

 git clone -b dev gitbox:ASTRI/PMC/PmcAcs control/PmcAcs

 @ $(ECHO) "Extracting from Git ASC "; \

 git clone -b dev gitbox:ASTRI/AUX/ASC control/ASC

 @ $(ECHO) "Extracting from Git SQM "; \

 git clone -b dev gitbox:ASTRI/AUX/SQM control/SQM

 @ $(ECHO) "Extracting from Git AMC "; \

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 51/70

All information contained in this document is property of INAF. All rights reserved.

 git clone -b dev gitbox:ASTRI/AMC/AmcAcs control/AMC

 @ $(ECHO) "Extracting from Git Database "; \

 git clone -b dev gitbox:ASTRI/ICD/ARCHIVE/Database
control/Database

 @ $(ECHO) "Extracting from Git device "; \

 git clone -b dev gitbox:ASTRI/CONTROL/TCS/common/device
control/device

 @ $(ECHO) "Extracting from Git idl common files of TCS (will
be put in TCS folder) "; \

 git clone -b dev gitbox:ASTRI/ICD/TCS control/TCS

 @ $(ECHO) "Extracting from Git TCU "; \

 git clone -b dev gitbox:ASTRI/CONTROL/TCU control/TCU

 @ $(ECHO) "Extracting from Git THCU "; \

 git clone -b dev gitbox:ASTRI/CONTROL/THCU control/THCU

 @ $(ECHO) "Extracting from Git TMCDB "; \

 git clone -b dev gitbox:ASTRI/Archive/TMCDB control/TMCDB

 @ $(ECHO) "Extracting from Git TMCDB_MySQL "; \

 git clone -b dev gitbox:ASTRI/DHS/TMCDB_MySQL
control/TMCDB_MySQL

 @ $(ECHO) "Extracting from Git WeatherStation "; \

 git clone -b dev ASTRI/AUX/WeatherStation
control/WeatherStation

 @ $(ECHO) "Extracting from Git ASTRI Telescope component ";
\

 git clone -b dev gitbox:ASTRI/CONTROL/astritel
control/astritel

 @ $(ECHO) "Extracting from Git Hardware Simulator "; \

 git clone -b dev gitbox:ASTRI/TOOLS/OpcuaSimulator
control/OpcuaSimulator

 @ $(ECHO) "Extracting from Git the OPCUA extensions "; \

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 52/70

All information contained in this document is property of INAF. All rights reserved.

 git clone -b dev gitbox:ASTRI/TOOLS/UaDataSupportExtensions
control/UaDataSupportExtensions

 @ $(ECHO) "Extracting from Git Hardware code generatore
PyHWGen "; \

 git clone -b dev gitbox:ASTRI/TOOLS/PyHwGen control/PyHwGen

 @ $(ECHO) "Extracting from Git the OMC GUI "; \

 git clone -b FedeDev gitbox:ASTRI/OCS/OMC control/OMC

 @ $(ECHO) "Extracting from Git Camera Control "; \

 git clone -b dev gitbox:ASTRI/CAM/AstriCameraControl

 @ $(ECHO) "Extracting from Git ICT ICMP "; \

 git clone -b dev gitbox:ASTRI/ICT/ICMP

 @ $(ECHO) "Extracting from Git IMO GUI (GUI for the ICT
monitoting) "; \

 git clone -b dev gitbox:ASTRI/ICT/IMO_GUI

 @ $(ECHO) "Install log4j.properties in the introot "; \

 cp conf/log4j.properties $(INTROOT)/config/

download_master:

 rm -rf control

 mkdir control;

 @ $(ECHO) "Extracting from Git the ext lib to support the
execution of characteristic components "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/TOOLS/ext_lib
control/ext_lib

 cp control/ext_lib/* $(INTROOT)/lib/

 @ $(ECHO) "Extracting from Git the astro tool "; \

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 53/70

All information contained in this document is property of INAF. All rights reserved.

 git clone --branch V.0.1.0 gitbox:ASTRI/TOOLS/astro
control/astro

 cp control/astro/lib/* $(INTROOT)/lib/

 @ $(ECHO) "Extracting from Git PMC "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/PMC/PmcAcs
control/PmcAcs

 @ $(ECHO) "Extracting from Git ASC "; \

 git clone --branch V.0.2.0 dev gitbox:ASTRI/AUX/ASC
control/ASC

 @ $(ECHO) "Extracting from Git SQM "; \

 git clone --branch V.0.2.0 dev gitbox:ASTRI/AUX/SQM
control/SQM

 @ $(ECHO) "Extracting from Git AMC "; \

 git clone -b master gitbox:ASTRI/AMC/AmcAcs control/AMC

 @ $(ECHO) "Extracting from Git Database "; \

 git clone -b master gitbox:ASTRI/ICD/ARCHIVE/Database
control/Database

 @ $(ECHO) "Extracting from Git device "; \

 git clone --branch V.0.1.0
gitbox:ASTRI/CONTROL/TCS/common/device control/device

 @ $(ECHO) "Extracting from Git idl common files of TCS (will
be put in TCS folder) "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/ICD/TCS control/TCS

 @ $(ECHO) "Extracting from Git TCU "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/CONTROL/TCU
control/TCU

 @ $(ECHO) "Extracting from Git THCU "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/CONTROL/THCU
control/THCU

 @ $(ECHO) "Extracting from Git TMCDB "; \

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 54/70

All information contained in this document is property of INAF. All rights reserved.

 git clone -b master gitbox:ASTRI/Archive/TMCDB control/TMCDB

 @ $(ECHO) "Extracting from Git TMCDB_MySQL "; \

 git clone -b master gitbox:ASTRI/DHS/TMCDB_MySQL
control/TMCDB_MySQL

 @ $(ECHO) "Extracting from Git WeatherStation "; \

 git clone --branch V.0.1.0 ASTRI/AUX/WeatherStation
control/WeatherStation

 @ $(ECHO) "Extracting from Git ASTRI Telescope component ";
\

 git clone -b master gitbox:ASTRI/CONTROL/astritel
control/astritel

 @ $(ECHO) "Extracting from Git Hardware Simulator "; \

 git clone --branch V.0.1.0
gitbox:ASTRI/TOOLS/OpcuaSimulator control/OpcuaSimulator

 @ $(ECHO) "Extracting from Git the OPCUA extensions "; \

 git clone --branch V.0.1.0
gitbox:ASTRI/TOOLS/UaDataSupportExtensions
control/UaDataSupportExtensions

 @ $(ECHO) "Extracting from Git Hardware code generatore
PyHWGen "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/TOOLS/PyHwGen
control/PyHwGen

 @ $(ECHO) "Extracting from Git the OMC GUI "; \

 git clone --branch V.0.1.0 gitbox:ASTRI/OCS/OMC control/OMC

 @ $(ECHO) "Install log4j.properties in the introot "; \

 cp conf/log4j.properties $(INTROOT)/config/

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 55/70

All information contained in this document is property of INAF. All rights reserved.

Test target

.PHONY: test

Test = test

$(Test):

 @$(ECHO) "############ Clean Test Log File: test.log
#################"

 @rm -f test.log

 @touch test.log

 @$(ECHO) "############ TEST $(SUBSYSTEM) Software
#################"| tee -a test.log

 @for member in $(foreach name,$(MODULES),$(name)); do\

 if [-d $${member}/ws/test]; then\

 $(ECHO) "############ $${member}/ws/test WS TEST
############" | tee -a test.log ;\

 $(MAKE) -k -C $${member}/ws/test/ $@ | tee -a
test.log | egrep '(Nothing to|FAILED.|PASSED.|Error:)';\

 if [-d $${member}/lcu/test]; then\

 $(ECHO) "############ $${member}/lcu/test
LCU TEST ############" | tee -a test.log;\

 $(MAKE) -k -C $${member}/lcu/test/ $@ | tee
-a test.log | egrep '(Nothing to|FAILED.|PASSED.|Error:)';\

 fi;\

 elif [-d $${member}/test]; then\

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 56/70

All information contained in this document is property of INAF. All rights reserved.

 $(ECHO) "############ $${member}/test MAIN TEST
############" | tee -a test.log ;\

 $(MAKE) -k -C $${member}/test/ $@ | tee -a
test.log | egrep '(Nothing to|FAILED.|PASSED.|Error:)';\

 else\

 $(ECHO) "### ==> $${member} TEST DIRECTORY
STRUCTURE NOT FOUND! FAILED!" | tee -a test.log ;\

 fi;\

 done

 @$(ECHO) "... done"

Standard canned targets

clean:

 $(canned)

all:

 $(canned)

install:

 $(canned)

man:

 $(canned)

buildClean: build clean

buildMan: build man

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 57/70

All information contained in this document is property of INAF. All rights reserved.

___oOo___

- Appendix B - ACS Command Center Configuration File

The ACS Command center configuration file is available in the repo
gitbox:ASTRI/CONTROL/ASTRI-Control-Setup.

The file is ASTRI_DISTRIBUTED_CONFIG_WITHTMCDB

In order to run acascommandcenter with the above configuration
you have to use the following command:

$ acscommandcenter ASTRI_DISTRIBUTED_CONFIG_WITHTMCDB

In this xml file you need to fill the following tags:

- mode: remote_daemon or local
- servicesLocalJavaRoot: the root folder of source files
- remoteHost: ip address or naming of machine which hosts the

acs manager
- containers. For each container the following data are

required:
- name: the container name
- type: java or python or cpp
- heapSizeMB: size of the container in MB for java

containers
- remoteHost: the machine which hosts the container.

The contents of ASTRI_DISTRIBUTED_CONFIG_WITHTMCDB is reported
below.

<?xml version="1.0" encoding="UTF-8"?>

<AcsCommandCenterProject
xmlns="Alma/Acs/AcsCommandCenterProject"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 creator="acc-v10.2" xsi:type="AcsCommandCenterProject">

 <mode>remote_daemon</mode>

 <servicesLocalJavaRoot>/home/astrisw/ASTRI-Control-
Setup</servicesLocalJavaRoot>

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 58/70

All information contained in this document is property of INAF. All rights reserved.

 <scriptBase>0</scriptBase>

 <remoteHost>slnacsss</remoteHost>

 <remoteAccount></remoteAccount>

 <remotePassword></remotePassword>

<toolRunAgainstDedicatedSettings>false</toolRunAgainstDedicatedS
ettings>

 <toolAgainstManagerHost></toolAgainstManagerHost>

 <toolAgainstManagerPort></toolAgainstManagerPort>

<toolAgainstInterfaceRepository></toolAgainstInterfaceRepository
>

 <toolAgainstNameService></toolAgainstNameService>

 <containers>

 <select>6</select>

 <againstManagerHost></againstManagerHost>

 <againstManagerPort></againstManagerPort>

 <againstCDB></againstCDB>

<againstInterfaceRepository></againstInterfaceRepository>

 <container>

 <name>slnauxJContainer</name>

 <type>java</type>

 <heapSizeMB>512</heapSizeMB>

 <useDedicatedSettings>true</useDedicatedSettings>

 <scriptBase>0</scriptBase>

 <remoteHost>slnaux</remoteHost>

 <remoteAccount></remoteAccount>

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 59/70

All information contained in this document is property of INAF. All rights reserved.

 </container>

 <container>

 <name>slntcsJContainer</name>

 <type>java</type>

 <heapSizeMB>2048</heapSizeMB>

 <useDedicatedSettings>true</useDedicatedSettings>

 <scriptBase>0</scriptBase>

 <remoteHost>slntcs</remoteHost>

 <remoteAccount></remoteAccount>

 </container>

 <container>

 <name>frodoContainer</name>

 <type>java</type>

 <heapSizeMB>2048</heapSizeMB>

 <useDedicatedSettings>true</useDedicatedSettings>

 <scriptBase>0</scriptBase>

 <remoteHost>slntcs</remoteHost>

 <remoteAccount></remoteAccount>

 </container>

 <container>

 <name>bilboContainer</name>

 <type>cpp</type>

 <heapSizeMB></heapSizeMB>

 <useDedicatedSettings>true</useDedicatedSettings>

 <scriptBase>0</scriptBase>

 <remoteHost>slntcs</remoteHost>

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 60/70

All information contained in this document is property of INAF. All rights reserved.

 <remoteAccount></remoteAccount>

 </container>

 <container>

 <name>slntcsCppContainer</name>

 <type>cpp</type>

 <heapSizeMB></heapSizeMB>

 <useDedicatedSettings>true</useDedicatedSettings>

 <scriptBase>0</scriptBase>

 <remoteHost>slntcs</remoteHost>

 <remoteAccount></remoteAccount>

 </container>

 <container>

 <name>slnauxCppContainer</name>

 <type>cpp</type>

 <heapSizeMB></heapSizeMB>

 <useDedicatedSettings>true</useDedicatedSettings>

 <scriptBase>0</scriptBase>

 <remoteHost>slnaux</remoteHost>

 <remoteAccount></remoteAccount>

 </container>

 </containers>

</AcsCommandCenterProject>

- Appendix C - ASTRI-Horn CDB tree

|-MACI

 | |-Channels

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 61/70

All information contained in this document is property of INAF. All rights reserved.

 | | |-Channels.xml

 | |-Components

 | | |-ARCHIVE

 | | | |-TMCDB

 | | | | |-MONITOR_BLOBBER

 | | | | | |-MONITOR_BLOBBER.xml

 | | | | |-MONITOR_CONTROL

 | | | | | |-MONITOR_CONTROL.xml

 | | | |-ARCHIVE.xml

 | | |-Components.xml

 | |-Containers

 | | |-aragornContainer

 | | | |-aragornContainer.xml

 | | |-bilboContainer

 | | | |-bilboContainer.xml

 | | |-frodoContainer

 | | | |-frodoContainer.xml

 | | |-slnauxCppContainer

 | | | |-slnauxCppContainer.xml

 | | |-slnauxJContainer

 | | | |-slnauxJContainer.xml

 | | |-slnclusterJContainer

 | | | |-slnclusterJContainer.xml

 | | |-slndaqCppContainer

 | | | |-slndaqCppContainer.xml

 | | |-slndaqJContainer

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 62/70

All information contained in this document is property of INAF. All rights reserved.

 | | | |-slndaqJContainer.xml

 | | |-slnomcJContainer

 | | | |-slnomcJContainer.xml

 | | |-slnstorageJContainer

 | | | |-slnstorageJContainer.xml

 | | |-slntcsCppContainer

 | | | |-slntcsCppContainer.xml

 | | |-slntcsJContainer

 | | | |-slntcsJContainer.xml

 | |-Managers

 | | |-Manager

 | | | |-Manager.xml

 |-alma

 | |-AMC

 | | |-AMC.xml

 | |-ASC

 | | |-ASC.xml

 | |-CameraControl

 | | |-CameraControl.xml

 | |-ICT_ICMP

 | | |-ICT_ICMP.xml

 | |-PMC

 | | |-PMC.xml

 | |-SQM

 | | |-SQM.xml

 | |-TCU

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 63/70

All information contained in this document is property of INAF. All rights reserved.

 | | |-TCU.xml

 | |-THCU

 | | |-THCU.xml

 | |-WeatherStation

 | | |-WeatherStation.xml

 |-build.log

- Appendix D - System configuration

- D-1 Scientific Linux 6.x at SLN

- D-1-1 System installation, startup and automatic configuration
In the case of the Scientific Linux 6.x operating system, the scripts must be copied to
the directory:

Ɣ /etc/init.d

They start and stop with the commands:

Ɣ service acscontainerdaemon start
Ɣ service acsservicesdaemon start

Ɣ service acscontainerdaemon stop
Ɣ service acsservicesdaemon stop

Verify that they started with:

Ɣ service acscontainerdaemon status
Ɣ service acsservicesdaemon status

Once you see that everything is fine, they are enabled to be started at the system boot
with the commands:

Ɣ chkconfig acscontainerdaemon on
Ɣ chkconfig acsservicesdaemon on

command to see if a script is enabled:

Ɣ chkconfig --list acscontainerdaemon
result:

Ɣ acscontainerdaemon 0:off 1:off 2:on 3:on 4:on 5:on 6:off

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 64/70

All information contained in this document is property of INAF. All rights reserved.

If you need to disable the scripts use the commands:
Ɣ chkconfig acscontainerdaemon on
Ɣ chkconfig acsservicesdaemon on

- D-1-4 Scripts Code
The scripts must be started with the system user that you have decided to use to run the
Software. In the scripts he must specify his username he belongs to.
The scripts are in the directory:

Ɣ /etc/init.d
Ɣ

[root@slnacsss init.d]# more acscontainerdaemon
#!/bin/sh

Startup script for program

chkconfig: 345 85 15
description: Description of program
processname: acscontainerdaemon
pidfile: /var/run/containerdaemon.pid

. /etc/init.d/functions

RETVAL=0
prog="acscontainerdaemon"
HOST=`hostname`
STAMP=`date "+%Y-%m-%d_%H.%M.%S"`
USER=astrisw
LOGDIR=~$USER/.acscontainerdaemon
LOG=$LOGDIR/acscontainerdaemon_$HOST-$STAMP
we should use the daemon facility provided by functions script, but
acscontainerdaemon does no fork into the background so it lockup the script.
For that reason i had to implement my onw flaky daemon start. I creates lock
and pid file, but they are just to mantain standard since they are of little
use.
#If there is an instance of the daemon running the script will pass.
case "$1" in
 start)
 echo -n "Starting $prog:"
 PID=`pidof $prog`
 if [$? -eq 1];then
 su -l $USER -c "mkdir -p $LOGDIR" && su -l $USER -c "$prog &> $LOG&"

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 65/70

All information contained in this document is property of INAF. All rights reserved.

 PID=`pidof $prog`
 RETVAL=$?
 if [$? -eq 1]; then
 failure
 else
 success
 fi
 else
 passed
 echo "acscontainerdaemon is already running"
 RETVAL=0
 fi
 echo
 if [$RETVAL -eq 0];then
 touch /var/lock/subsys/$prog
 PID=$(pidofproc "$prog")
 echo $PID > /var/run/$prog.pid
 fi
 ;;
 stop)
 echo -n "Shutting down process-name: "
 killproc $prog
 RETVAL=$?
 echo
 if [$RETVAL -eq 0];then
 rm -f /var/lock/subsys/$prog
 rm -f /var/run/$prog.pid
 fi
 ;;
 status)
 status $prog
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|status}"
 exit 1
esac

exit 0

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 66/70

All information contained in this document is property of INAF. All rights reserved.

[root@slnacsss init.d]# more acsservicesdaemon
#!/bin/sh

Startup script for program

chkconfig: 345 84 16
description: Description of program
processname: acsservicesdaemon
pidfile: /var/run/acsservicesdaemon.pid

. /etc/init.d/functions

RETVAL=0
prog="acsservicesdaemon"
HOST=`hostname`
STAMP=`date "+%Y-%m-%d_%H.%M.%S"`
USER=astrisw
LOGDIR=~$USER/.acsservicesdaemon
LOG=$LOGDIR/acsservicesdaemon_$HOST-$STAMP
we should use the daemon facility provided by functions script, but
acsservicesdaemon does no fork into the background so it lockup the script.
For that reason i had to implement my onw flaky daemon start. I creates lock
and pid file, but they are just to mantain standard since they are of little
use.
#If there is an instance of the daemon running the script will pass.
case "$1" in
 start)
 echo -n "Starting $prog:"
 PID=`pidof $prog`
 if [$? -eq 1];then
 su -l $USER -c "mkdir -p $LOGDIR" && su -l $USER -c "$prog &> $LOG&"
 PID=`pidof $prog`
 RETVAL=$?
 if [$? -eq 1]; then
 failure
 else
 success
 fi
 else
 passed
 echo "acsservicesdaemon is already running"
 RETVAL=0

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 67/70

All information contained in this document is property of INAF. All rights reserved.

 fi
 echo
 if [$RETVAL -eq 0];then
 touch /var/lock/subsys/$prog
 PID=$(pidofproc "$prog")
 echo $PID > /var/run/$prog.pid
 fi
 ;;
 stop)
 echo -n "Shutting down process-name: "
 killproc $prog
 RETVAL=$?
 echo
 if [$RETVAL -eq 0];then
 rm -f /var/lock/subsys/$prog
 rm -f /var/run/$prog.pid
 fi
 ;;
 status)
 status $prog
 ;;
 restart)
 $0 stop
 $0 start
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|status}"
 exit 1
esac

exit 0

- D-2 CentOS 7.x for the Test Bed

- D-2-1 System installation, startup and automatic configuration
In the case of the CentOS7.x operating system, the scripts must be copied to the
directory:

Ɣ /etc/systemd/system/

They start and stop with the commands:

Ɣ systemctl start acscontainerdaemon.service
Ɣ systemctl start acsservicesdaemon.service

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 68/70

All information contained in this document is property of INAF. All rights reserved.

Ɣ systemctl stop acscontainerdaemon.service
Ɣ systemctl stop acsservicesdaemon.service

Verify that they started with:

Ɣ systemctl status acscontainerdaemon.service
Ɣ systemctl status acsservicesdaemon.service

Once you see that everything is fine, they are enabled to be started at the system boot
with the commands:

Ɣ systemctl enable acscontainerdaemon.service
Ɣ systemctl enable acsservicesdaemon.service

command to see if a script is enabled:

Ɣ systemctl list-unit-files | grep acs
result:

Ɣ acscontainerdaemon.service enabled

If you need to modify the scripts, they must be reloaded into the system with the
commands:

Ɣ systemctl daemon-reload

If you need to disable the scripts use the commands:

Ɣ systemctl disable acscontainerdaemon.service
Ɣ systemctl disable acsservicesdaemon.service

- D-2-2 Script Code
The scripts must be started with the system user that you have decided to use to run the
Software. In the scripts he must specify his username and the group he belongs to.
In the script, the hostname of the server on which it will be run must be specified.
The scripts are in the directory:

Ɣ /etc/systemd/system/

[root@slnacsss system]# more acscontainerdaemon.service
[Unit]
Description=Daemon to start ACS containers -- remote or local
After=auditd.service systemd-user-sessions.service time-sync.target

[Service]
User=astrisw
Group=cta
Environment=HOST=slnacsss.astrivpn.com
ExecStart=/bin/bash -c 'source /home/astrisw/.bash_profile; exec acscontainerdaemon'
ExecReload=/bin/kill -HUP $MAINPID

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 69/70

All information contained in this document is property of INAF. All rights reserved.

KillMode=process

[Install]
WantedBy=multi-user.target

[root@slnacsss system]# more acsservicesdaemon.service
[Unit]
Description=Daemon to start ACS services -- remote or local
After=auditd.service systemd-user-sessions.service time-sync.target

[Service]
User=astrisw
Group=cta
Environment=HOST=slnacsss.astrivpn.com
ExecStart=/bin/bash -c 'source /home/astrisw/.bash_profile; exec acsservicesdaemon'
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process

[Install]
WantedBy=multi-user.target

- E script to run containers

#!/bin/bash

echo "[INFO]Start slntcsJContainer on slntcs"

acsdaemonStartContainer -i 0 -t java -c slntcsJContainer -H
slntcs -m corbaloc::slnacsss.astrivpn.com:3000/Manager

echo "[INFO]Start frodoContainer on slntcs"

acsdaemonStartContainer -i 0 -t java -c frodoContainer -H slntcs
-m corbaloc::slnacsss.astrivpn.com:3000/Manager

echo "[INFO]Start bilboContainer on slntcs"

acsdaemonStartContainer -i 0 -t cpp -c bilboContainer -H slntcs
-m corbaloc::slnacsss.astrivpn.com:3000/Manager

echo "[INFO]Start slntcsCppContainer on slntcs"

acsdaemonStartContainer -i 0 -t cpp -c slntcsCppContainer -H
slntcs -m corbaloc::slnacsss.astrivpn.com:3000/Manager

ASTRI Mini-Array

Astrofisica con Specchi a Tecnologia Replicante Italiana

Code: ASTRI-INAF-REP-2100-001 Issue 1.0 Date: 14/01/2021 Page: 70/70

All information contained in this document is property of INAF. All rights reserved.

echo "[INFO]Start slnauxCppContainer on slnaux "

acsdaemonStartContainer -i 0 -t cpp -c slnauxCppContainer -H
slnaux -m corbaloc::slnacsss.astrivpn.com:3000/Manager

echo "[INFO]Start slnauxJContainer on slnaux"

acsdaemonStartContainer -i 0 -t java -c slnauxJContainer -H
slnaux -m corbaloc::slnacsss.astrivpn.com:3000/Manager

#echo "[INFO]Start frodoContainer on slnaux"

#acsdaemonStartContainer -i 0 -t java -c frodoContainer -H slnaux
-m corbaloc::slnacsss.astrivpn.com:3000/Manager

#echo "[INFO]Start bilboContainer on slnaux"

#acsdaemonStartContainer -i 0 -t cpp -c bilboContainer -H slnaux
-m corbaloc::slnacsss.astrivpn.com:3000/Manager

